

Schub breast Journal Club

L'IMPORTANZA DELLA RICERCA IN ONCOLOG

7-8 MARZO 2025 NAPOLI

Hotel Royal Continental Via Partenope, 38

Metastatic luminal breast cancer

8 Marzo 2025

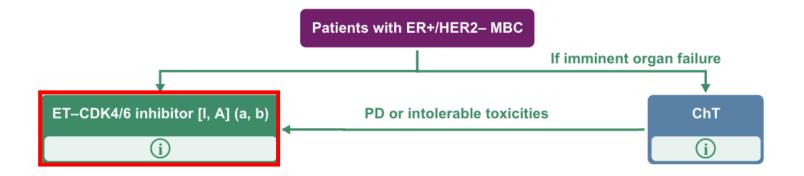
Claudio Vernieri, MD PhD

Associate Professor, University of Milan Medical Oncologist, Fondazione IRCCS Istituto Nazionale dei Tumori Group Leader, IFOM ETS, the AIRC Institute of Molecular Oncology

Disclosures

Consulting or Advisory role: Novartis, Eli Lilly, Pfizer, Daiichi Sankyo, Astra Zeneca, Menarini Stemline

Honoraria as a Speaker: Novartis, Eli Lilly, Pfizer, Daiichi Sankyo, Astra Zeneca, Menarini Stemline, MSD, Istituto Gentili, Accademia di Medicina


Research grants (to the Institution): AIRC, ERC, Roche, Giuliani Foundation, Ministero della Salute, Daiichi Sankyo/Astra Zeneca

ESMO Metastatic HR+/HER2- BC Living Guidelines

(i)

First-line treatment

https://www.esmo.org/living-guidelines/esmo-metastatic-breast-cancer-living-guideline/er-positive-her2-negative-breast-cancer

v1.1 - May 2023

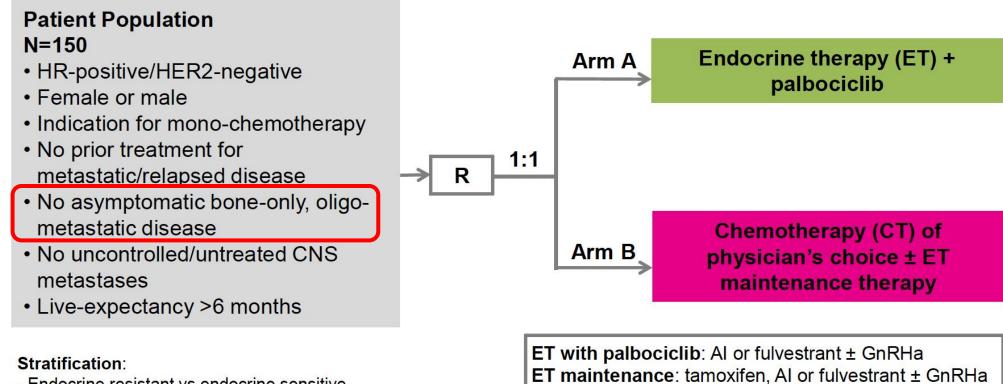
DECEMBER 10-13, 2024

HENRY B. GONZALEZ CONVENTION CENTER • SAN ANTONIO, TX

Primary results of the randomised phase IV trial comparing first-line ET plus palbociclib vs standard mono-chemotherapy in women with high risk HER2-/HR+ metastatic breast cancer and indication for chemotherapy - PADMA study

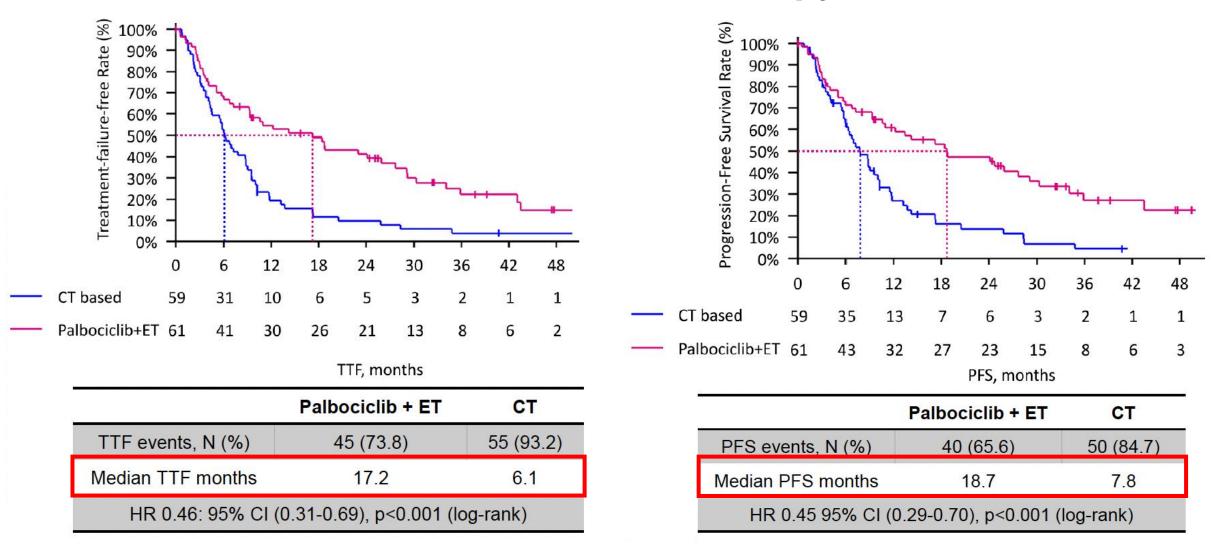
Sibylle Loibl¹, Marc Thill², Julia Rey¹, Beate Rautenberg³, Vesna Bjelic-Radisic^{4,5}, Thomas Decker⁶, Joachim Rom⁷, Matthias Kögel⁸, Kristina Lübbe⁹, Axel Nacke¹⁰, Nader Hirmas¹, Marianne Just¹¹, Volkmar Müller¹², Renu Buss-Steidle¹³, Jürgen Terhaag¹⁴, Christoph Mundhenke¹⁵, Carsten Denkert¹⁶, Johannes Holtschmidt¹, Marcus Schmidt¹⁷

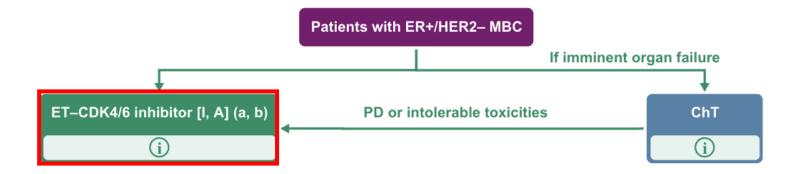
on behalf of the PADMA investigators



1 German Breast Group, Neu-Isenburg, Germany; 2 Agaplesion Markus Hospital, Frankfurt am Main, Germany; 3 Department of Obstetrics and Gynecology, Hospital Freiburg, Germany; 4 Helios University Clinic Wuppertal, Germany; 5 University Witten/Herdecke, Germany; 6 Oncology Ravensburg, Germany; 7 Hospital Höchst Frankfurt am Main, Germany; 8 Hospital Worms, Germany; 9 Diakovere Henriettenstift, Breast Center, Hannover, Germany; 10 Oncology Bad Neuenahr, Germany; 11 Oncology specialist practice Bielefeld, Germany; 12 University Hospital Hamburg-Eppendorf, Germany; 13 Helios Hospital Pforzheim, Germany; 14 MVZ Eggenfelden, Germany; 15 Department of Gynecology and Obstetrics, Hospital Hohe Warte, Bayreuth, Germany; 16 Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM) University Hospital Marburg, Germany; 17 Department of Obstetrics and Gynecology, University Medical Center Mainz, Germany

This presentation is the intellectual property of the author/presenter. Contact them at publications@gbg.de for permission to reprint and/or distribute.

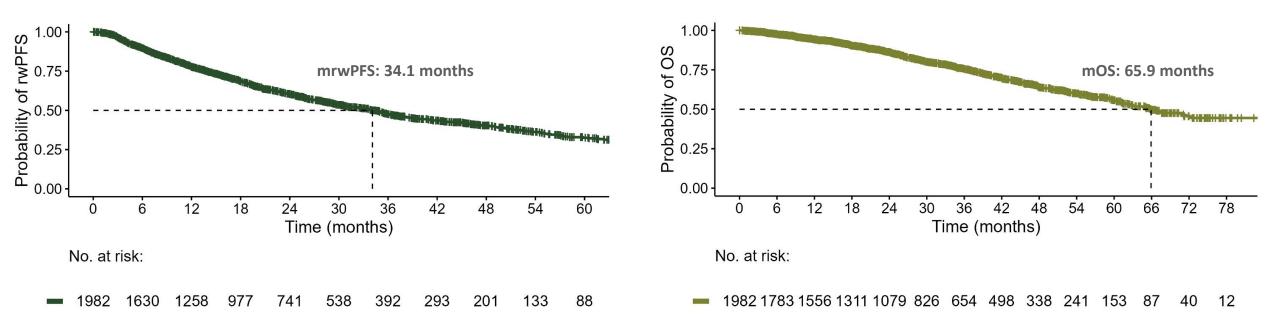

PADMA study design


CT: paclitaxel, capecitabine, epirubicin, or vinorelbine

- Endocrine resistant vs endocrine sensitive
- Symptomatic vs asymptomatic metastatic disease

First-line treatment ET plus palbociclib is more effective than first-line chemotherapy

First-line treatment


Current treatment landscape and outcomes: mPFS*

https://www.esmo.org/living-guidelines/esmo-metastatic-breast-cancer-living-guideline/er-positive-her2-negative-breast-cancer

v1.1 - May 2023

Patients with HR+/HER2- aBC spend more than half of their expected lifetime on ET+CDK4/6i therapy

Printed by Claudio Vernieri on 2/16/2025 5:13:21 PM. For personal use only. Not approved for distribution. Copyright © 2025 National Comprehensive Cancer Network, Inc., All Rights Reserved.

	National
	Compreh
ICCN	Cancer
	Network [®]

NCCN Guidelines Version 1.2025

NCCN Guidelines Index Table of Contents Discussion

> BINV-P 3 OF 3

^a Baseline assessment of bone density recommended for patients receiving an aromatase inhibitor who are at risk of osteoporosis (eg, age >65, family history, chronic steroids).

^b There is controversy on the choice of CDK4/6 inhibitor as there are no head to head comparisons between the agents and there are some differences in the study populations in the phase 3 randomized studies.

^c In phase 3 randomized controlled trials, ribociclib + endocrine therapy have shown OS benefit in the first-line setting.

^d Consider for disease progression on adjuvant endocrine therapy or with early disease relapse within 12 months of adjuvant endocrine therapy completion

^e In phase 3 randomized controlled trials, fulvestrant + ribociclib or abemaciclib has shown OS benefit in the first-line setting

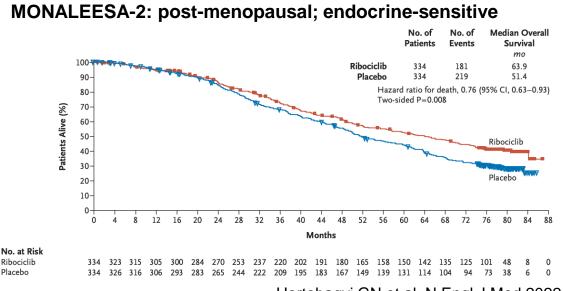
^f In phase 3 randomized controlled trials, fulvestrant in combination with a CDK4/6 inhibitor (abemaciclib, palbociclib, and ribociclib) has shown OS benefit in the secondline setting.

^g If there is disease progression while on palbociclib, there are limited phase II data to support the use of ribociclib in the second line setting.

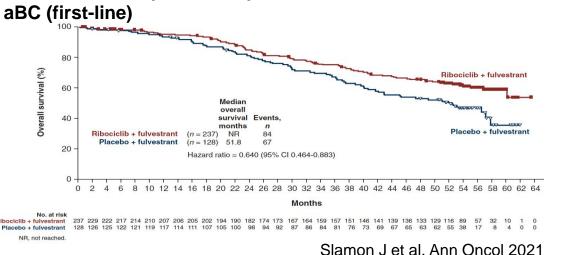
^h If there is progression while on a PI3K inhibitor, there are limited data to support another line of therapy with a PI3K-pathway inhibitor-containing regimen.

If there is disease progression while on an everolimus-containing regimen, there are no data to support an additional line of therapy with another everolimus regimen.

A combination of exemestane with everolimus can be considered for patients who meet the eligibility criteria for BOLERO-2 (progressed within 12 mo or on nonsteroidal aromatase inhibitor).

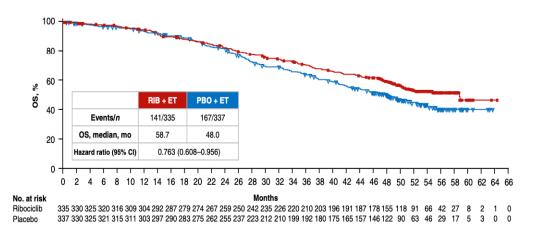

^k A single study (S0226) in patients with HR-positive breast cancer and no prior chemotherapy, biological therapy, or endocrine therapy for metastatic disease demonstrated that the addition of fulvestrant to anastrozole resulted in prolongation of time to progression and OS. Subset analysis suggested that patients without prior adjuvant tamoxifen and more than 10 years since diagnosis experienced the greatest benefit. Two studies with similar design (FACT and SOFEA) demonstrated no advantage in time to progression with the addition of fulvestrant to anastrozole.

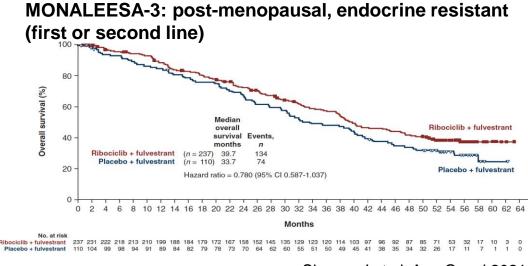
¹ Indicated after progression on prior endocrine therapy and prior chemotherapy in the metastatic setting.


Note: All recommendations are category 2A unless otherwise indicated.

Version 1.2025, 1/31/25 © 2025 National Comprehensive Cancer Network® (NCCN®), All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN.

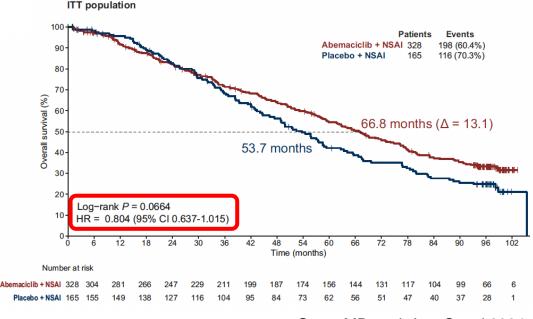
Ribociclib improves OS in both pre-menopausal and postmenopausal HR+/HER2- aBC patients


Hortobagyi GN et al. N Engl J Med 2022

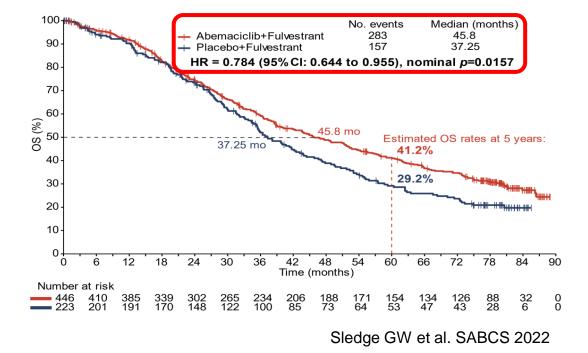

MONALEESA-3: post-menopausal, endocrine sensitive/de novo

Placebo

MONALEESA-7: pre/peri-menopausal, endocrine sensitive/resistant



Lu YS et al. Clin Cancer Res 2022


Slamon J et al. Ann Oncol 2021

Abemaciclib resulted in clinically relevant OS improvement in premenopausal and post-menopausal HR+/HER2- aBC patients

MONARCH3: post-menopausal; endocrine-sensitive

Goetz MP et al. Ann Oncol 2024

MONARCH2: post-menopausal; endocrine-resistant

Printed by Claudio Vernieri on 2/16/2025 5:13:21 PM. For personal use only. Not approved for distribution. Copyright © 2025 National Comprehensive Cancer Network, Inc., All Rights Reserved.

National Comprehensive	NCCN Guidelines Version 1.2025
Cancer Network [®]	Invasive Breast Cancer

NCCN

NCCN Guidelines Index Table of Contents Discussion

> BINV-P 3 OF 3

^a Baseline assessment of bone density recommended for patients receiving an aromatase inhibitor who are at risk of osteoporosis (eg, age >65, family history, chronic steroids).

^b There is controversy on the choice of CDK4/6 inhibitor as there are no head to head comparisons between the agents and there are some differences in the study populations in the phase 3 randomized studies.

^c In phase 3 randomized controlled trials, ribociclib + endocrine therapy have shown OS benefit in the first-line setting.

^d Consider for disease progression on adjuvant endocrine therapy or with early disease relapse within 12 months of adjuvant endocrine therapy completion

- ^e In phase 3 randomized controlled trials, fulvestrant + ribociclib or abemaciclib has shown OS benefit in the first-line setting
- ^f In phase 3 randomized controlled trials, fulvestrant in combination with a CDK4/6 inhibitor (abemaciclib, palbociclib, and ribociclib) has shown OS benefit in the secondline setting.
- ⁹ If there is disease progression while on palbociclib, there are limited phase II data to support the use of ribociclib in the second line setting.
- ^h If there is progression while on a PI3K inhibitor, there are limited data to support another line of therapy with a PI3K-pathway inhibitor-containing regimen.
- If there is disease progression while on an everolimus-containing regimen, there are no data to support an additional line of therapy with another everolimus regimen.
- A combination of exemestane with everolimus can be considered for patients who meet the eligibility criteria for BOLERO-2 (progressed within 12 mo or on nonsteroidal aromatase inhibitor).
- ^k A single study (S0226) in patients with HR-positive breast cancer and no prior chemotherapy, biological therapy, or endocrine therapy for metastatic disease demonstrated that the addition of fulvestrant to anastrozole resulted in prolongation of time to progression and OS. Subset analysis suggested that patients without prior adjuvant tamoxifen and more than 10 years since diagnosis experienced the greatest benefit. Two studies with similar design (FACT and SOFEA) demonstrated no advantage in time to progression with the addition of fulvestrant to anastrozole.

¹ Indicated after progression on prior endocrine therapy and prior chemotherapy in the metastatic setting.

Note: All recommendations are category 2A unless otherwise indicated.

Version 1.2025, 1/31/25 © 2025 National Comprehensive Cancer Network® (NCCN®), All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN.

First-line treatment: novelties from 2024

- Real-world effectiveness comparison of first-line palbociclib, ribociclib or abemaciclib in combination with ET
- Inavolisib in combination with fulvestrant plus palbociclib in patients with endocrine-resistant, *PIK3CA*-mutated HR+/HER2- aBC

First-line treatment: novelties from 2024

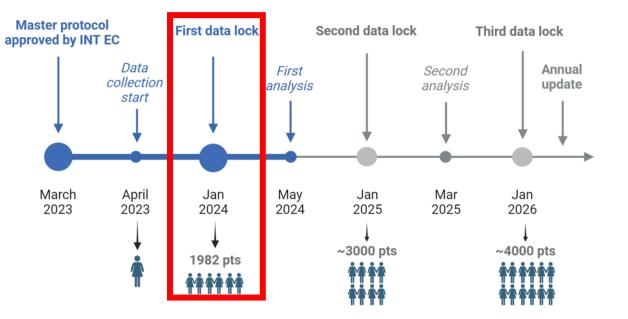
- Real-world effectiveness comparison of first-line palbociclib, ribociclib or abemaciclib in combination with ET
- Inavolisib in combination with fulvestrant plus palbociclib in patients with endocrine-resistant, PIK3CA-mutated HR+/HER2- aBC

Comparison of antitumor efficacy of first-line Palbociclib, Ribociclib or Abemaciclib in patients with HR+/HER2- aBC: results of the multicenter, real-world, Italian study PALMARES-2

<u>Vernieri C¹</u>, Provenzano L¹, Giuliano M², Rizzo G³, Toss A⁴, Piras M⁵, Sirico M⁶, Tagliaferri B⁷, Giordano M⁸, Miliziano D¹, Generali D⁹, Sartori D¹⁰, Zambelli A¹¹, Gennari A¹², La Verde N¹³, Pedersini R¹⁴, Lambertini M¹⁵, Botticelli A¹⁶, Curigliano G¹⁷, Dieci MV¹⁸, PALMARES-2 study group

¹Breast Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy, ²Department of Clinical Medicine and Surgery, University of Naples "Federico II", Napoli, Italy, ³Department of Medical Oncology, Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy, ⁴Department of Medical Oncology, University of Modena and Reggio Emilia, Modena, Italy, ⁵Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy, ⁶Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy, ⁷Medical Oncology Unit, ICS Maugeri IRCCS, Pavia, Italy, ⁸Oncology Unit, Sant'Anna Hospital, ASST Lariana, 22042 San Fermo della Battaglia, Italy, ⁹ Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy and University of Trieste, ¹⁰Oncology Unit, AULSS 3, Mirano, Italy, ¹¹Medical Oncology, and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy, ¹²Medical Oncology, Department of Medical Oncology, U.O. Clinica di Oncology Department, Novara, Italy, ¹³Medical Oncology Department, ASST Spedali Civili of Brescia, Brescia, Italy, ¹⁵Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy, ¹⁶Department of Radiological, Oncologia and Pathological Science, Sapienza University of Rome, Rome, Italy, ¹⁷European Institute of Oncology, IRCCS, Milan, Italy and University of Milano, ¹⁸Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy

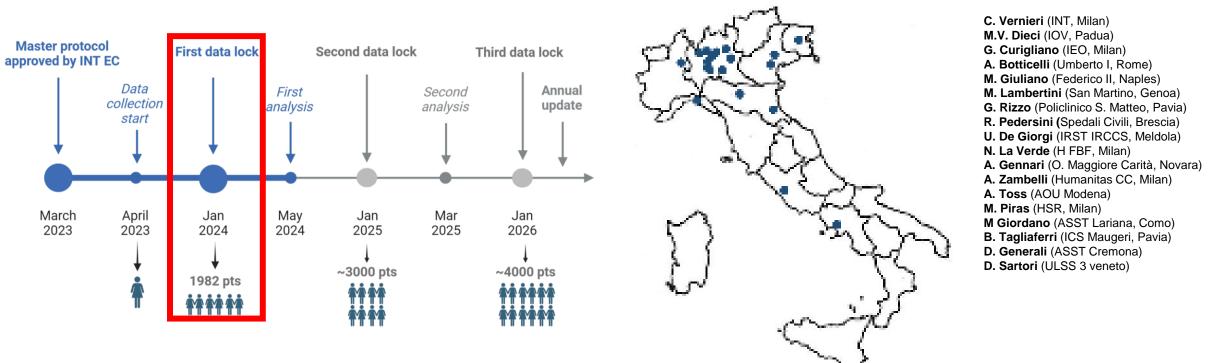
#ASCO24


Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

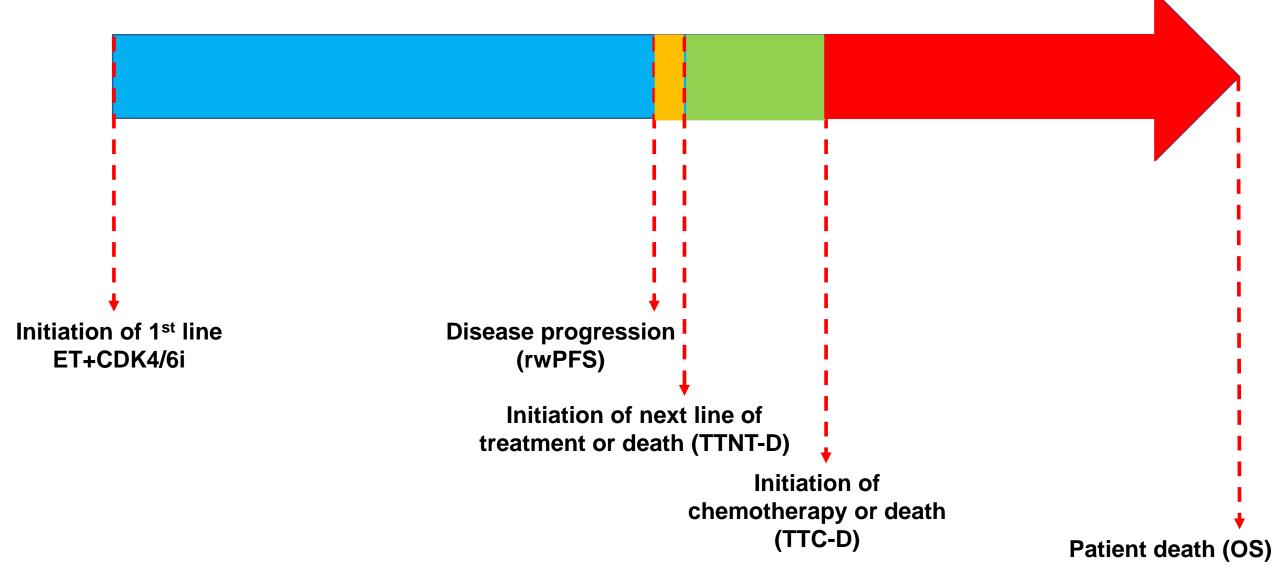
Contacts

<u>claudio.vernieri@istitutotmori.mi.it</u> <u>claudio.vernieri@unimi.it</u> <u>claudio.vernieri@ifom.eu</u>

PALMARES-2 network and timeline

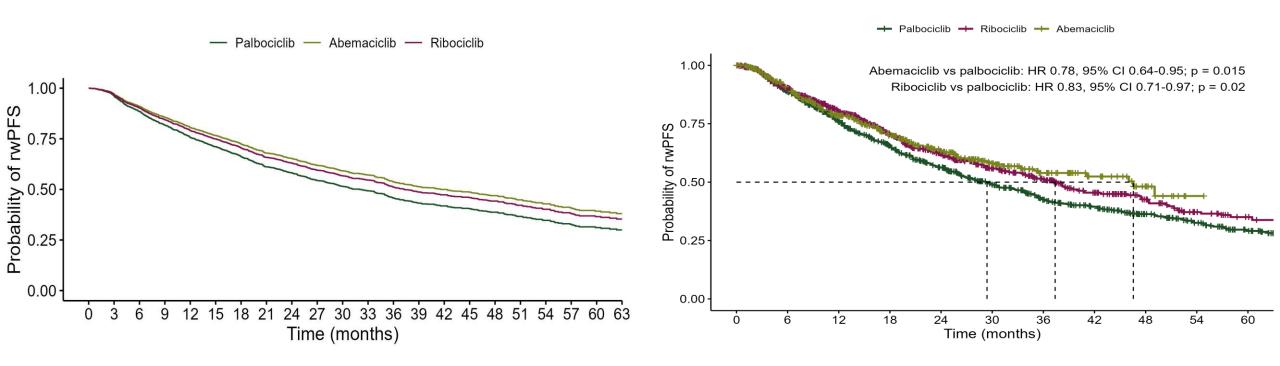


PALMARES-2 network and timeline


Participating centers (n=18)

Investigators

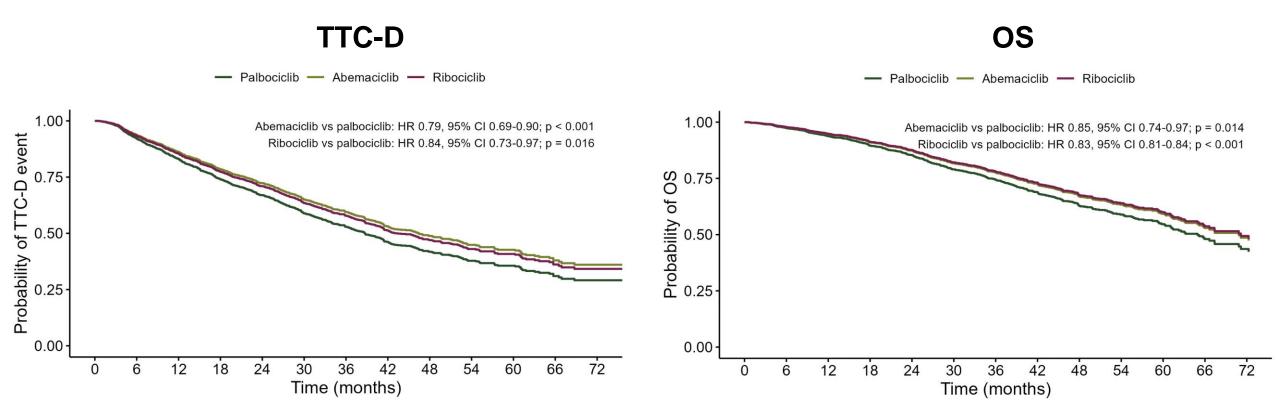
PALM RES-2



PALMARES-2 study endpoints

*OS: primary study endpoint

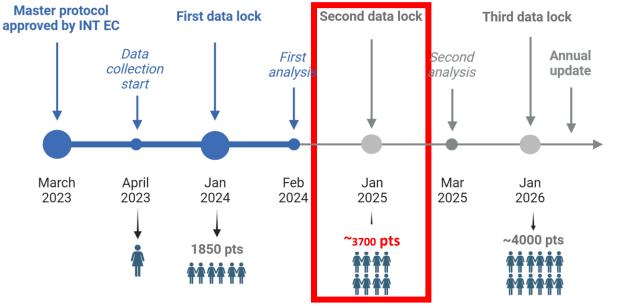
Ribociclib and abemaciclib are associated with better rwPFS when compared to palbociclib



Cox regression model adjusted curves

IPTW-based balancing of covariates

Vernieri C et al ASCO 2024 meeting Manuscript under revision

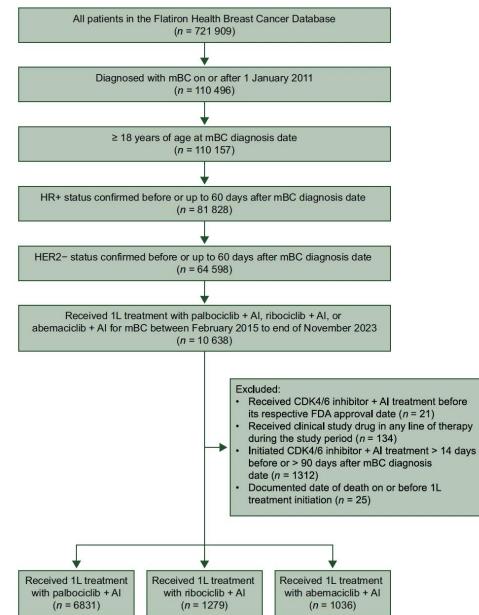

Ribociclib and abemaciclib are associated with better TTC-D and OS when compared to palbociclib

Data not mature yet

Vernieri C et al ASCO 2024 meeting Manuscript under revision

Second PALMARES-2 study data lock

PALMARES-2 investigators


M.V. Dieci (IOV, Padua) G. Curigliano (IEO, Milan) A. Botticelli (Umberto I, Rome) M. Giuliano (Federico II, Naples) M. Lambertini (San Martino, Genoa) G. Rizzo (Policlinico S. Matteo, Pavia) R. Pedersini (Spedali Civili, Brescia) U. De Giorgi (IRST IRCCS, Meldola) **N. La Verde** (H FBF, Milan) A. Gennari (O. Maggiore Carità, Novara) A. Zambelli (Humanitas CC, Milan) A. Toss (AOU Modena) M. Piras (HSR, Milan) M Giordano (ASST Lariana, Como) B. Tagliaferri (ICS Maugeri, Pavia) D. Generali (ASST Cremona) **D. Sartori** (ULSS 3 veneto) I. Meattini (AOU Careggi, Florence) R. Caputo (IRCCS G. Pascale, Naples) L. Gerratana (CRO IRCCS, Aviano) **O. Garrone** (Ca' Granda Policlinico, Milan) F. Pantano (Campus Bio-Medico, Rome) A. Fabi (Policlinico Gemelli, Rome) S. Cinieri (O. «A. Perrino», Brindisi) P. Vigneri (Humanitas, Catania)

G. Ricciardi (AO Papardo, Messina)

Mature TTC-D data will be presented at ASCO 2025 meeting

Mature OS data are expected for ASCO 2026 meeting

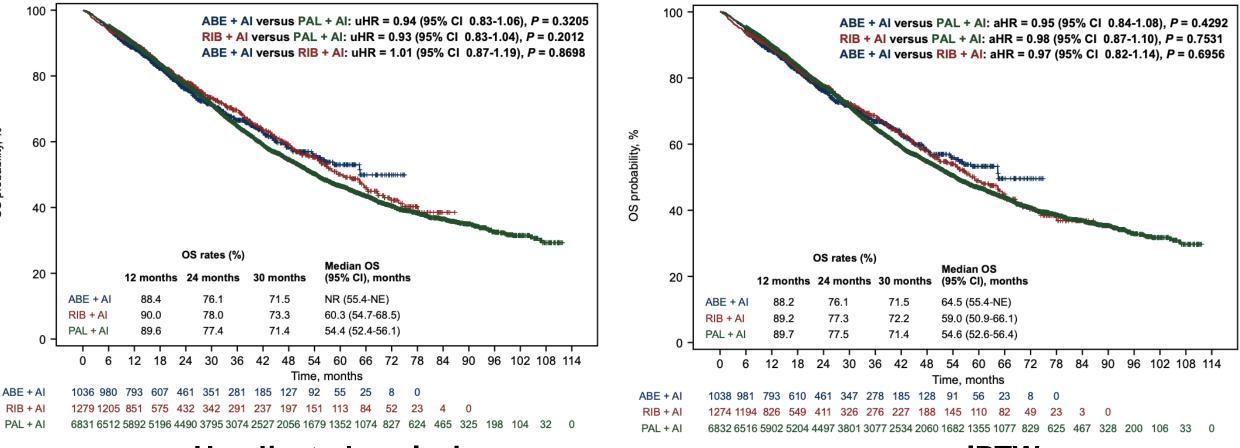
A large, retrospective OS comparison of first-line CDK4/6i in combination with AIs in patients with HR+/HER2- aBC

Adjustment methods:

- sIPTW (stabilized inverse-probability-of-weighting)
- Cox proportional regression models

Adjustment covariates:

- Age
- Sex
- Practice type
- ECOG PS
- Disease stage at initial diagnosis
- Visceral metastasis
- Bone-only disease
- Number of disease sites
- Disease-free interval (from initial NC diagnosis to aBC diagnosis)


Rugo H et al SABCS 2024 meeting Rugo H et al ESMO Open 2025

First-line palbociclib, ribociclib and abemaciclib are not associated with significantly different OS in a large US patient cohort (n=9146)

Rugo H et al SABCS 2024 meeting Rugo H et al ESMO Open 2025

First-line palbociclib, ribociclib and abemaciclib are not associated with significantly different OS in a large US patient cohort (n=9146)

Unadjusted analysis

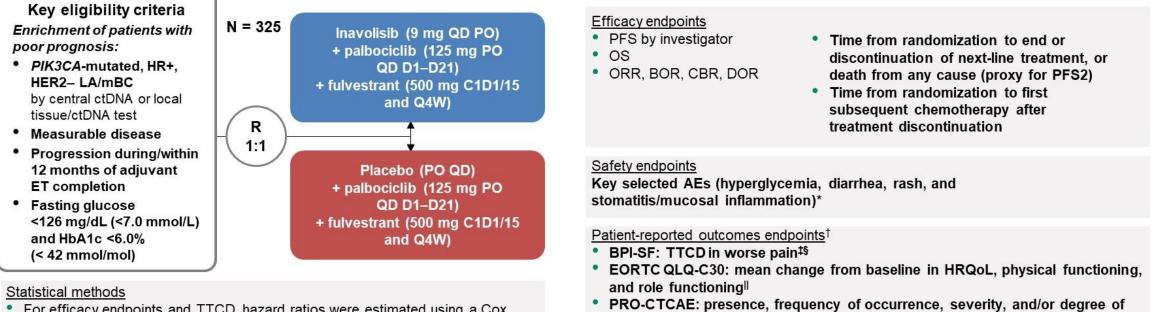
DS probability,

sIPTW

Results confirmed by multivariable analyses (Cox regression models)

- Ribociclib vs. palbociclib: aHR=0.94 (95% CI: 0.84-1.07; P=0.3216)
- Abemaciclib vs. palbociclib: aHR=0.94 (95% CI: 0.84-1.07; P=0.3603)
- Abemaciclib vs. ribociclib: aHR=1.00 (95% CI: 0.85-1.17; P=0.9851)

Rugo H et al SABCS 2024 meeting Rugo H et al ESMO Open 2025


However...

- Imbalances in treatment assignment: palbociclib (n=6931), ribociclib (n=1279), abemaciclib (n=1036)
- Imbalances in median follow-up: palbociclib (33 months), ribociclib (16 months), abemaciclib (21 months)
- Crucial covariates were not used in multivariable models: <u>endocrine sensitivity/resistance</u>; <u>adjuvant treatments</u>; <u>menopausal status</u>; <u>liver/lung metastases</u>; <u>ER/PgR expression</u>; <u>luminal A vs. B like</u> disease; <u>subsequent lines of</u> <u>therapy</u>
- Only patients treated with concomitant aromatase inhibitors were included in this analysis (why?)
- Other clinically relevant endpoints, such as <u>rwPFS, rwPFS2 and TTC</u>, were not reported (because these data "were not available", as stated by the authors
- Due to the low number of patients at risk in the ribociclib and abemaciclib cohorts after month 30, point estimates beyond this timepoint were not stable

First-line treatment: novelties from 2024

- Real-world effectiveness comparison of first-line palbociclib, ribociclib or abemaciclib in combination with ET
- Inavolisib in combination with fulvestrant plus palbociclib in patients with endocrine-resistant, PIK3CA-mutated HR+/HER2- aBC

INAVO120 study design¹

 For efficacy endpoints and TTCD, hazard ratios were estimated using a Cox proportional hazard model with 95% CI and Kaplan–Meier methodology was used to estimate the medians with the Brookmeyer–Crowley method used for the 95% CI

An overall bother item: overall bother experienced due to side effects
of treatment

interference with daily function of selected symptomatic treatment toxicities

* Assessed using grouped terms; severity reported per National Cancer Institute CTCAE version 5.0. [†] Assessed at D1 of C1–3 then D1 of every other C thereafter (5, 7, 9, etc.), at treatment discontinuation, and every 3 months during survival follow-up; baseline completion rates in both arms were >90% for all assessments; post-baseline rates in both arms remain >80% through C15; <50% intent-to-treat sample remaining at C9 in the inavolisib arm versus C5 in the placebo arm. [‡] Type I error-controlled; hierarchically tested according to a prespecified fixed order of endpoints. [§] Defined as the time from randomization to the first documentation of a ≥2-point increase from baseline on the "worst pain" item held for at least two consecutive Cs, or an initial increase followed by death or treatment discontinuation within 3 weeks from the last assessment. I A ≥10-point change was defined as a clinically meaningful difference.

AE, adverse event; (LA/m)BC, (locally advanced/metastatic) breast cancer; BOR, best overall response; BPI-SF, brief pain inventory-short form; C, Cycle; CBR, clinical benefit rate; CI, confidence interval; CTCAE, Common Terminology Criteria for Adverse Events; ctDNA, circulating tumor DNA; D, Day; DOR, duration of response; EORTC QLQ-C30, European Organisation for Research and Treatment of Cancer Core Quality of Life questionnaire; ET, endocrine therapy;

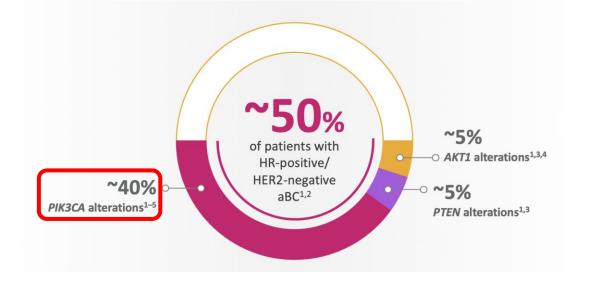
HER2-, HER2-negative; HR+, hormone receptor-positive; HRQoL, health-related quality of life; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival;

PFS2, time from randomization to next progression after discontinuing study treatment for PD, or death from any cause; PO, orally; PRO, patient-reported outcomes; Q4W, every 4 weeks; QD, once daily; R, randomized;

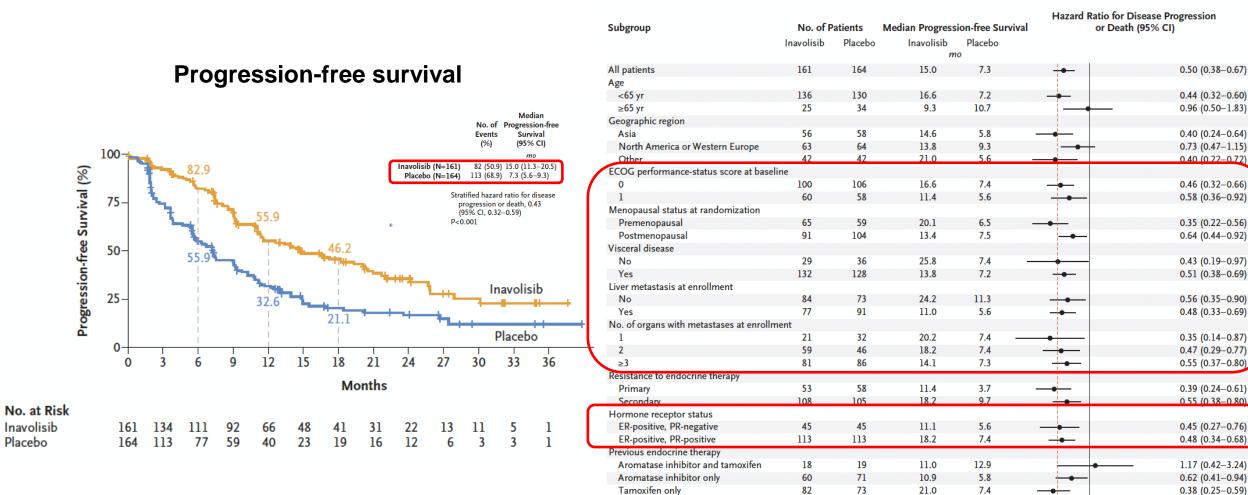
TTCD, time to confirmed clinical meaningful deterioration.

#ASCO24

1. Jhaveri KL, et al. SABCS 2023 (Abstract GS03-13).



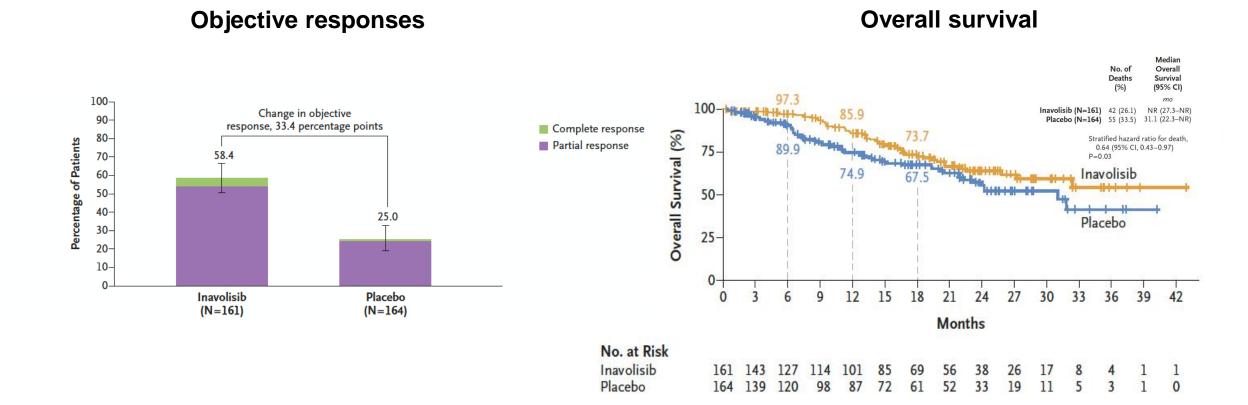
Numbers...


- About one third (33%) of HR+/HER2- aBC patients have endocrine-resistant disease
- About 40% of patients with HR+/HER2- aBC have *PIK3CA* tumor mutations

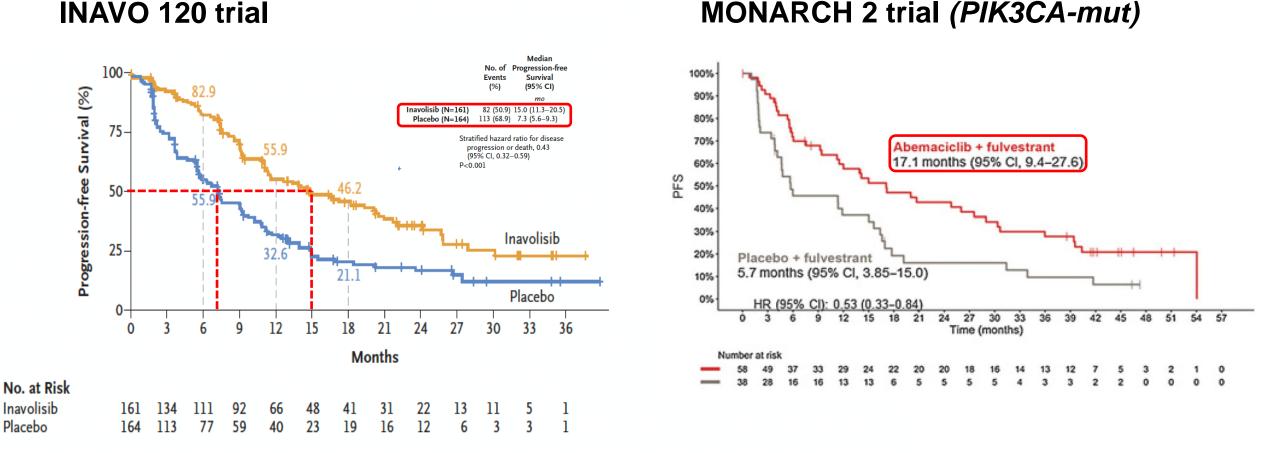
About 15% of all HR+/HER2- aBC have endocrine-resistant disease AND *PIK3CA* tumor mutations

Inavolisib improves patient PFS regardless of type and sites of metastases, HR and menopausal status, ECOG PS

B Analysis of Progression-free Survival in Key Subgroups


0.10 0.43 1.00

Inavolisib Better Placebo Better

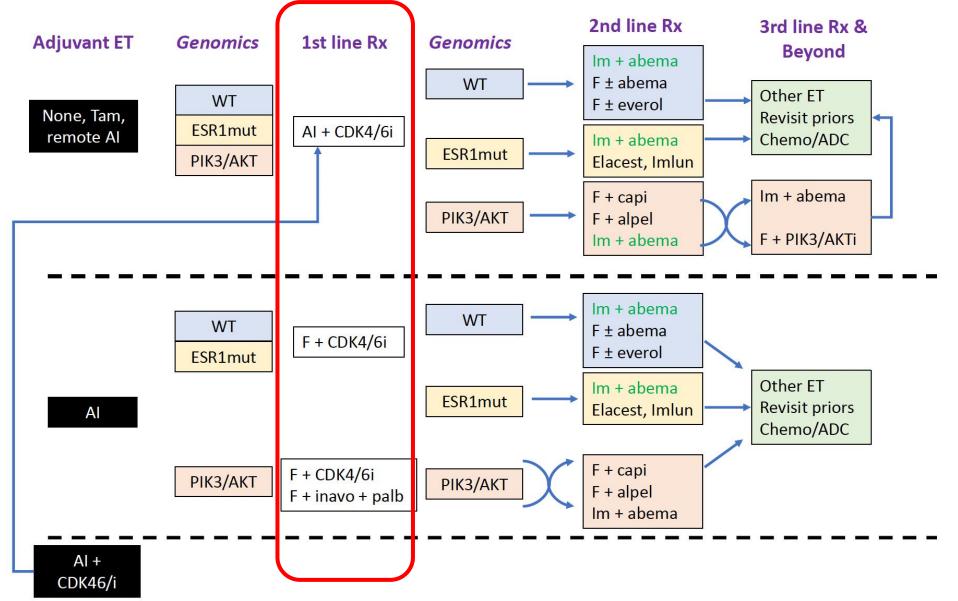

Turner NC et al. N Eng J Med 2024

10.00

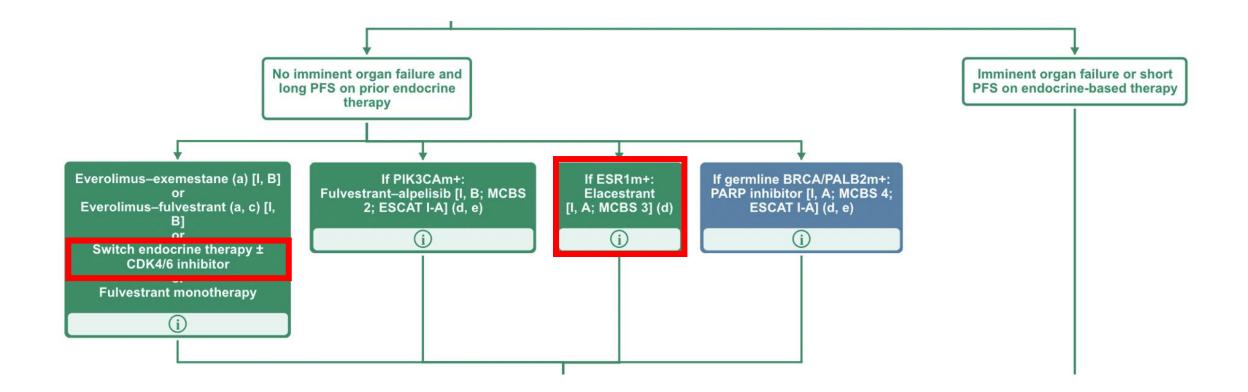
Inavolisib also improves tumor responses and overall survival

PFS comparison of fulvestrant+abemaciclib vs. fulvestrant+ palbociclib+inavolisib in PIK3CA-mutated HR+/HER2- aBC patients

Turner NC et al. N Eng J Med 2024

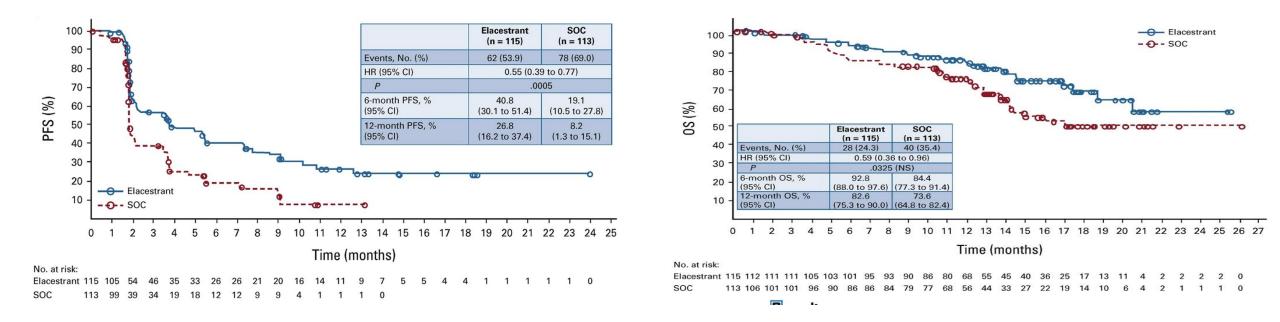

INAVO 120 trial

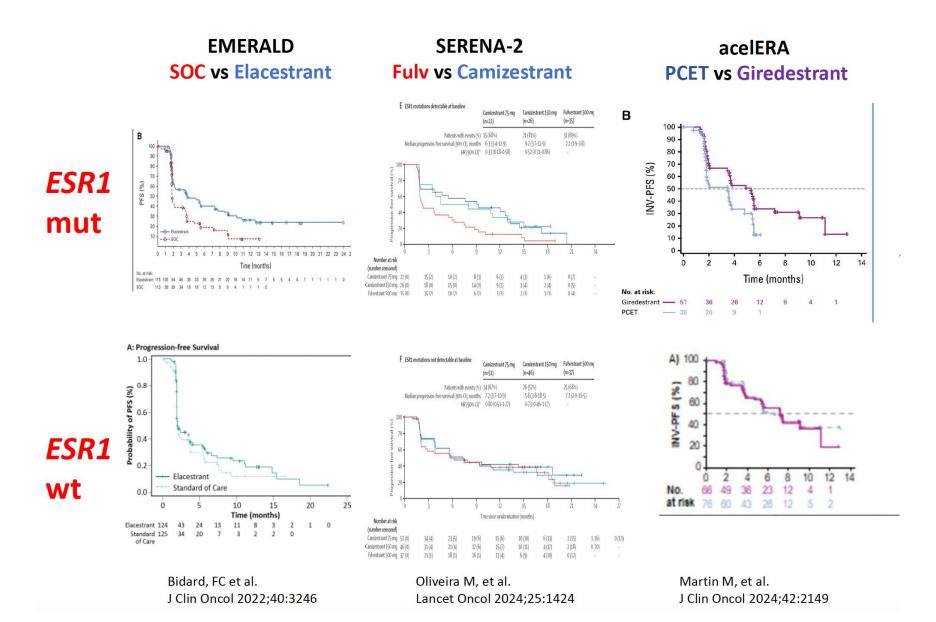
Tolaney S.M. et al. Clin Cancer Res 2022


Some comments...

- Palbociclib is the least effective CDK4/6i in patients with endocrine-resistant disease
- This limitation will become more and more important as the use of more potent CDK4/6i, namely ribociclib and abemaciclib, will increase in the <u>adjuvant setting</u> in the next years (based on the results o NATALEE and monarchE trials)
- We do not know whether a sequence of ET+CDK4/6i followed by ET+PI3K/AKT inhibitors (e.g., capivasertib; alpelisib) is more effective than a triplet treatment with ET+CDK4/6i+PI3K/AKTi
- The <u>EMBER-3 trial</u> provides the opportunity of using a second and more effective CDK4/6i, such as <u>abemaciclib</u> in combination with imlunestrant, as a second-line treatments in patients progressing on palbociclib-inavolisibbased therapy

Median PFS in recent RCTs of endocrine therapy: sub-analysis in patients with prior CDK4/6i therapy


Second-line treatment: ESR1-mutated tumors and CDK4/6i switch


Elacestrant improved PFS and OS in HR+/HER2- aBC patient with ESR1 mutations

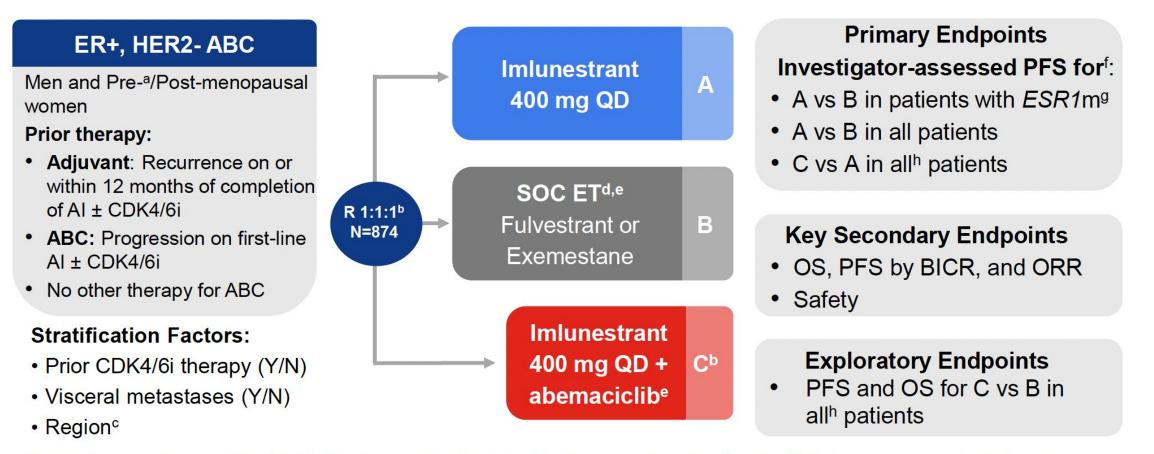
PFS: ESR1-mutated cohort

OS: ESR1-mutated cohort

Benefit of oral SERDs vs. standard ET in ESR1-mutated and ESR1-wt tumors

DECEMBER 10-13, 2024

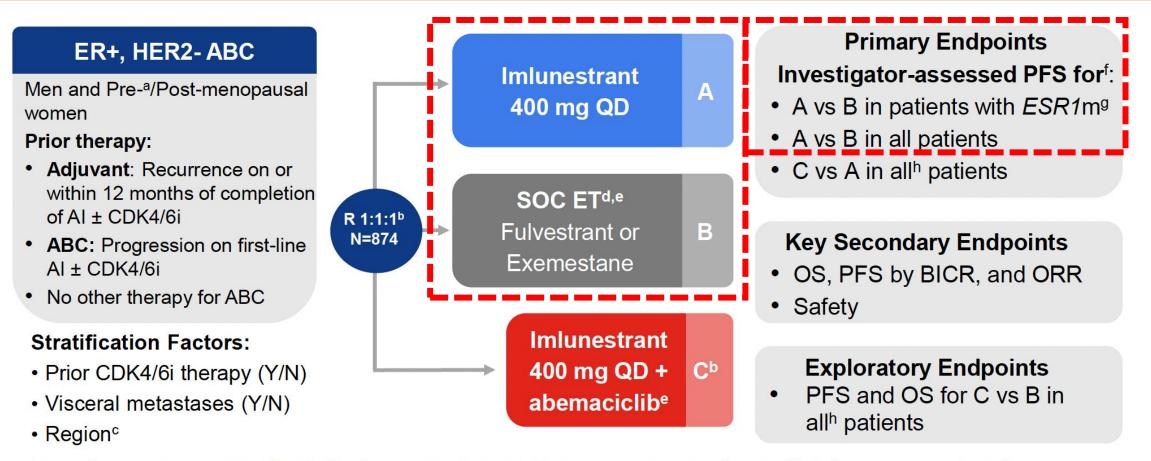
HENRY B. GONZALEZ CONVENTION CENTER • SAN ANTONIO, TX


Imlunestrant, an Oral Selective Estrogen Receptor Degrader (SERD), as Monotherapy and Combined with Abemaciclib, for Patients with ER+, HER2-Advanced Breast Cancer (ABC), Pretreated with Endocrine Therapy (ET): Results of the Phase 3 EMBER-3 trial

<u>Komal L. Jhaveri,</u>¹ Patrick Neven,² Monica Lis Casalnuovo,³ Sung-Bae Kim,⁴ Eriko Tokunaga,⁵ Philippe Aftimos,⁶ Cristina Saura,⁷ Joyce O'Shaughnessy,⁸ Nadia Harbeck,⁹ Lisa A. Carey,¹⁰ Giuseppe Curigliano,¹¹ Antonio Llombart-Cussac,¹² Elgene Lim,¹³ María de la Luz García Tinoco,¹⁴ Joohyuk Sohn,¹⁵ André Mattar,¹⁶ Qingyuan Zhang,¹⁷ Chiun-Sheng Huang,¹⁸ Chih-Chiang Hung,¹⁹ Jorge Luis Martinez Rodriguez,²⁰ Manuel Ruiz Borrego,²¹ Rikiya Nakamura,²² Kamnesh R. Pradhan,²³ Christoph Cramer von Laue,²³ Emily Barrett,²³ Shanshan Cao,²³ Xuejing Aimee Wang,²³ Lillian M. Smyth,²³ François-Clément Bidard²⁴

¹Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA; ²University Hospitals Leuven, Leuven, Belgium; ³Hospital María Curie, Buenos Aires, Argentina; ⁴Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ⁵National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan; ⁶Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Brussels, Belgium; ⁷Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ⁸Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX, USA; ⁹Breast Center, Department of Obstetrics and Gynecology and CCC Munich, LMU University Hospital, Munich, Germany; ¹⁰University of North Carolina at Chapel Hill, NC, USA; ¹¹University of Milano, Milan, Italy and European Institute of Oncology, IRCCS, Milano, Italy; ¹²Hospital Arnau de Vilanova, Valencia, Spain; ¹³Garvan Institute of Medical Research and University of New South Wales, Darlinghurst, Sydney, New South Wales, Australia; ¹⁴Hospital de Oncología, Centro Médico Nacional Siglo XXI, Ciudad de México, México; ¹⁵Yonsei University College of Medicine, Seoul, Republic of Korea; ¹⁶Mastology Department, Women's Health Hospital, São Paulo, Brazil; ¹⁷Harbin Medical University Cancer Hospital, Harbin, China; ¹⁸National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; ¹⁹Division of Breast Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; ²⁰ Filios Alta Medicina SA de CV, Monterrey, Nuevo León, México; ²¹Medical Oncology Department, Hospital Universitario Virgen del Rocío, Seville, Spain; ²² Department of Breast Surgery, Chiba Cancer Center Hospital, Chiba, Japan; ²³Eli Lilly and Company, Indianapolis, IN, USA; ²⁴Institut Curie and UVSQ/Paris-Saclay University, Paris and Saint-Cloud, France

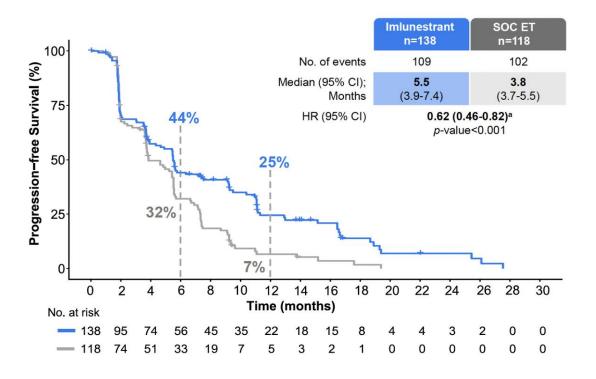
EMBER-3 Study Design



ABC, advanced breast cancer; AI, aromatase inhibitor; BICR, blinded independent central review; CDK4/6i CDK4/6 inhibitor; ER, estrogen receptor; *ESR1*m, *ESR1* mutation; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; QD, once daily; SOC ET, standard of care endocrine therapy. Patients were enrolled from October 2021 to November 2023 across 195 sites in 22 countries. *A GnRH agonist was required in men and premenopausal women; ^b Enrollment into Arm C started with Protocol Amendment A (at which point 122 patients had been randomized across Arms A and B); ^c East Asia vs United States/European Union vs others; ^d Investigator's choice; ^e Labeled dose; ^f Scans every 8 weeks for the first 12 months, then every 12 weeks; ^g *ESR1*m status was centrally determined in baseline plasma by the Guardant 360 ctDNA assay and OncoCompass Plus assay (Burning Rock Biotech) for patients from China; ^h Analysis conducted in all concurrently randomized patients.

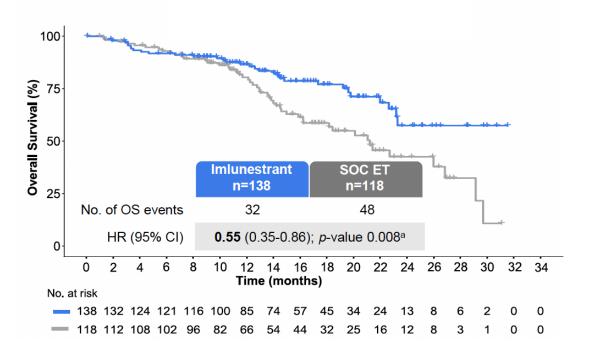
EMBER-3 Study Design

ABC, advanced breast cancer; AI, aromatase inhibitor; BICR, blinded independent central review; CDK4/6i CDK4/6 inhibitor; ER, estrogen receptor; *ESR1*m, *ESR1* mutation; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; QD, once daily; SOC ET, standard of care endocrine therapy. Patients were enrolled from October 2021 to November 2023 across 195 sites in 22 countries. *A GnRH agonist was required in men and premenopausal women; ^b Enrollment into Arm C started with Protocol Amendment A (at which point 122 patients had been randomized across Arms A and B); ^c East Asia vs United States/European Union vs others; ^d Investigator's choice; ^e Labeled dose; ^f Scans every 8 weeks for the first 12 months, then every 12 weeks; ^g *ESR1*m status was centrally determined in baseline plasma by the Guardant 360 ctDNA assay and OncoCompass Plus assay (Burning Rock Biotech) for patients from China; ^h Analysis conducted in all concurrently randomized patients.


Patient characteristics

Characteri	stic	Imlunestrant n=331	SOC ET n=330	Imlunestrant + abemaciclib n=213	Characteristic		Imlunestrant n=331	SOC ET n=330	Imlunestrant + abemaciclib n=213
Median age, years (range)		61 (28-87)	62 (27-89)	62 (36-87)		Visceral	57	54	56
Female, %		99	99	99	Site of	Liver	32	30	27
Post-menopausal, %		84	86	86	metastases, %	Bone-only	22	26	24
Race, %	White	56	58	52	Endocrine resistance, % ^c	Primary	8	11	8
	Asian	28	29	34		Secondary	92	89	93
	Black or African American	3	2	4	Most recent	Adjuvant	32	34	30
Region, %	East Asia	25	26	31	ET, % ^d Previous CDK4/6i, %	ABC	63	63	68
	North America/ Western Europe	38	39	45		Overall	59	57	65
	Other		36	24		Adjuvant	4	5	3
PR-positive		78	79	74	and and a second s	ABC	55	53	62 🗲
ESR1 muta		42	36	32	Previous	Palbociclib	61	69	65 🔶
PI3K pathw					CDK4/6i	Ribociclib	29	27	27
mutations, % ^b		39 39	41	therapy, % ^e	Abemaciclib	<mark>1</mark> 0	4	7	

Baseline characteristics were generally well balanced including in patients with ESR1mf


Imnulestrant improves PFS (primary endpoint) in patient with ESR1mutated HR+/HER2- aBC

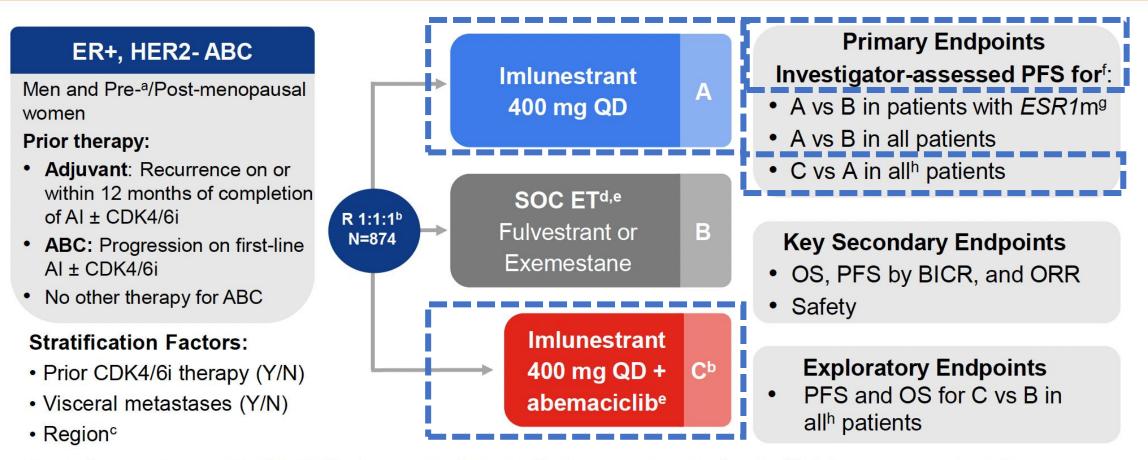
PFS: ESR1-mutated cohort

OS: ESR1-mutated cohort

(31% maturity)

Imlunestrant improves PFS regardless of visceral metastases, previous CDK4/6i and PI3K pathway alterations

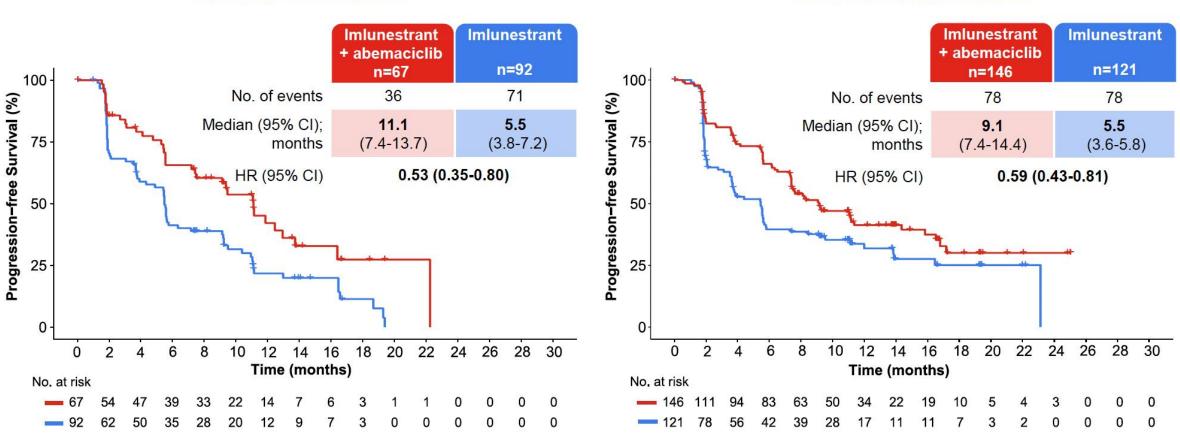
Subgroup		Imlunestrant No. of Event	SOC ET ts/Total No.	Hazard Ratio (95% CI)	Interaction <i>p</i> -value
Patients with ESR1 mutation		109/138	102/118	⊢−● −1	0.62 (0.46, 0.82)	
Investigator's choice of ET	Exemestane Fulvestrant	3/4 106/134	4/6 98/112		0.53 (0.09, 3.00) 0.61 (0.46, 0.81)	0.950
Age	<65 years ≥65 years	74/91 35/47	69/78 33/40		0.61 (0.44, 0.86) 0.57 (0.34, 0.95)	0.859
Region	East Asia North America/Western Europe Other	23/30 51/63 35/45	23/26 44/54 35/38		→ 0.47 (0.25, 0.89) → 0.77 (0.51, 1.17) 0.50 (0.31, 0.82)	0.284
No. of metastatic sites	1 2 ≥3	24/35 36/45 49/58	26/35 35/39 41/44		0.53 (0.30, 0.94) 0.61 (0.37, 0.99) 0.63 (0.41, 0.98)	0.901
Visceral metastasis	No Yes	39/54 70/84	42/51 60/67		0.51 (0.32, 0.79) 0.68 (0.47, 0.98)	0.612
Liver metastasis	No Yes	58/81 51/57	59/71 43/47		0.58 (0.40, 0.83) 0.64 (0.41, 0.99)	0.679
Bone-only metastasis	No Yes	92/111 17/27	79/88 23/30		0.65 (0.47, 0.89) 0.42 (0.22, 0.80)	0.439
Previous CDK4/6 inhibitor	No Yes	29/45 80/93	31/33 71/85		0.42 (0.25, 0.72) 0.72 (0.52, 1.01)	0.246
Line of therapy in advanced setting	First-line Second-line	19/30 88/106	21/23 81/95		0.48 (0.25, 0.92) 0.66 (0.48, 0.90)	0.599
PI3K pathway mutation status	Detected Not detected	59/72 50/64	48/57 54/61		0.62 (0.41, 0.93) 0.61 (0.41, 0.91)	0.732
				● 0.25 0.5 1 Favors Imlunestrant	2 Favors SOC ET	


ET, endocrine therapy; SOC ET, standard of care endocrine therapy. First-line: most recent ET = adjuvant; Second-line: most recent ET = ABC. The total number of patients may not add up due to missing data in certain subgroups.

Limitations of EMBER3 vs. EMERALD

- Only ~50% of patients received CDK4/6i for advanced disease
- Most patients treated with CDK4/6i received palbociclib (the least effective CDK4/6i)
- Subgroup PFS analysis in patients with ESR1-mutated tumors previously treated with CDK4/6i did not reach (yet?) statistical significance in favor of imlunestrant
- Lack of OS advantage in patients with *ESR1*-mutated tumors

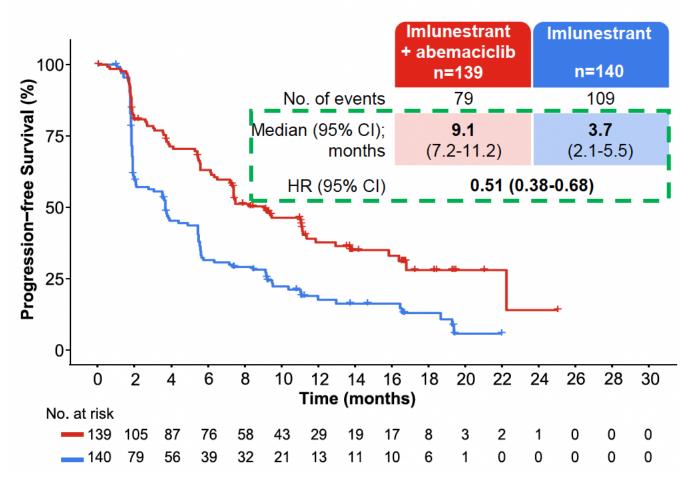
EMBER-3 Study Design



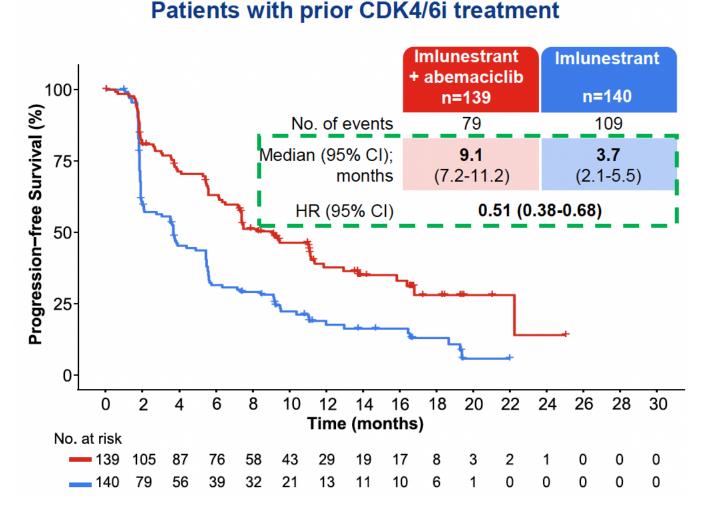
ABC, advanced breast cancer; AI, aromatase inhibitor; BICR, blinded independent central review; CDK4/6i CDK4/6 inhibitor; ER, estrogen receptor; *ESR1*m, *ESR1* mutation; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; QD, once daily; SOC ET, standard of care endocrine therapy. Patients were enrolled from October 2021 to November 2023 across 195 sites in 22 countries. *A GnRH agonist was required in men and premenopausal women; *Enrollment into Arm C started with Protocol Amendment A (at which point 122 patients had been randomized across Arms A and B); *East Asia vs United States/European Union vs others; *Investigator's choice; *Labeled dose; *Scans every 8 weeks for the first 12 months, then every 12 weeks; **ESR1*m status was centrally determined in baseline plasma by the Guardant 360 ctDNA assay and OncoCompass Plus assay (Burning Rock Biotech) for patients from China; *Analysis conducted in all concurrently randomized patients.

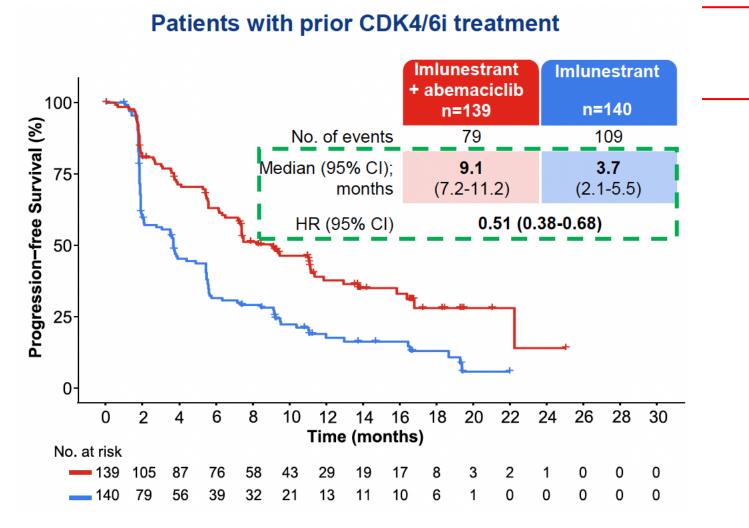

Imlunestrant plus abemaciclib is more effective than imlunestrant regardless of *ESR1* mutations

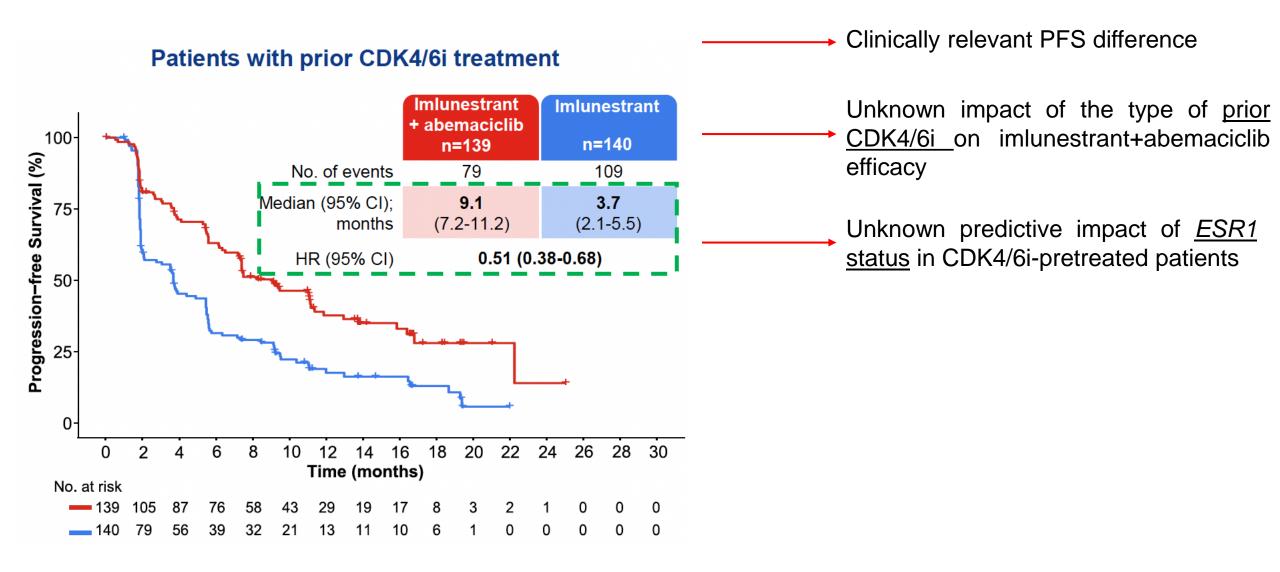
Patients with ESR1m

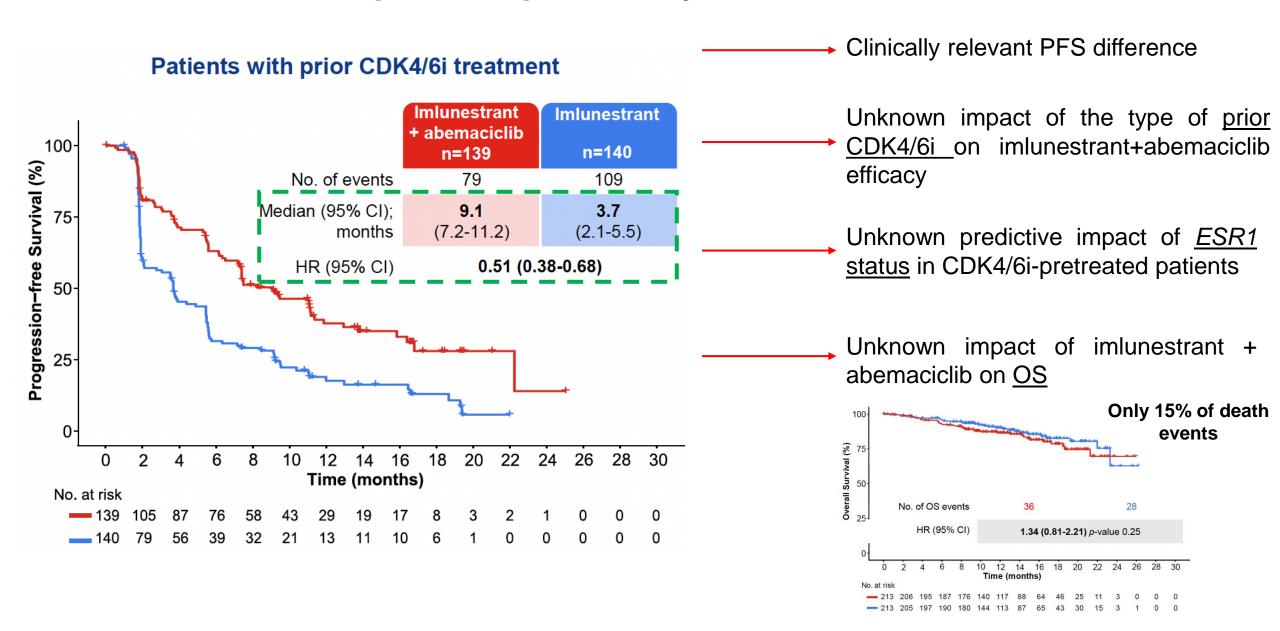


Patients without ESR1m


Imlunestrant plus abemaciclib is more effective than imlunestrant regardless of *ESR1* mutations





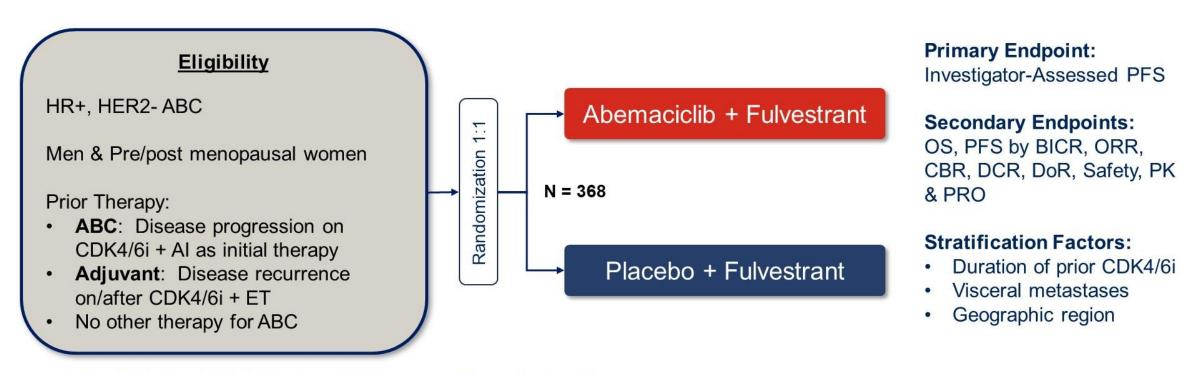


Clinically relevant PFS difference

Unknown impact of the type of prior <u>CDK4/6i</u> on imlunestrant+abemaciclib efficacy

Abemaciclib plus fulvestrant vs fulvestrant alone for HR+, HER2- advanced breast cancer following progression on prior CDK4/6 inhibitor plus endocrine therapy: Primary outcome of the Phase 3 postMONARCH trial

Kevin Kalinsky¹, Giampaolo Bianchini², Erika P. Hamilton³, Stephanie L. Graff⁴, Kyong Hwa Park⁵, Rinath Jeselsohn⁶, Umut Demirci⁷, Miguel Martin⁸, Rachel M. Layman⁹, Sara Hurvitz¹⁰, Sarah Sammons¹¹, Peter A. Kaufman¹², Montserrat Munoz¹³, Ling-Ming Tseng¹⁴, Holly Knoderer¹⁵, Bastien Nguyen¹⁵, Yanhong Zhou¹⁵, Elizabeth Ravenberg¹⁵, Lacey M. Litchfield¹⁵, Seth A. Wander¹⁶

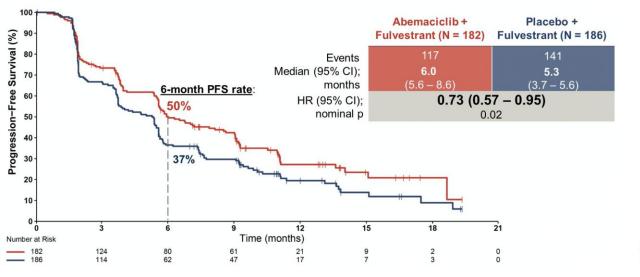

¹Winship Cancer Institute at Emory University, Atlanta, GA, USA, ²IRCCS Ospedale, San Raffaele, Milan, Italy, ³Sarah Cannon Research Institute, Nashville, TN, USA, ⁴Lifespan Cancer Institute, Warren Albert School of Medicine, Brown University, Providence, RI, USA, ⁵Korea University Anam Hospital, Korea University, Seoul, South Korea, ⁶Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA, ⁷Memorial Ankara Hospital, Ankara, Turkey, ⁸Hospital General Universitario Gregorio Maranon, Universidad Complutense, Madrid, Spain, ⁹MD Anderson Cancer Center, University of Texas, Houston, TX, USA, ¹⁰Fred Hutchinson Cancer Center, University of Washington School of Medicine, Seattle, WA, USA, ¹¹Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA, ¹²University of Vermont Medical Center, Burlington, VT, USA, ¹³Hospital Clinic i Provincial, Barcelona, Spain,¹⁴Taipei Veterans General Hospital, Taipei, Taiwan,¹⁵Eli Lilly and Company, Indianapolis, IN, USA, ¹⁶Massachusetts General Hospital, Harvard University, Boston, MA, USA

2024 ASCO ANNUAL MEETING #ASCO24 #RESENTED BY: Kevin Kalinsky, MD, MS Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

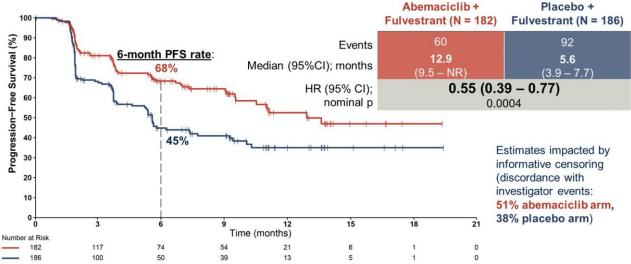
postMONARCH study design

- Enrolled March 2022 to June 2023 across 96 centers in 16 countries
- Scans every 8 weeks for the first 12 months, then every 12 weeks
- Primary outcome targeted 251 events; interim analysis planned at ~70% of events
- Assuming a hazard ratio (HR) of 0.70, ~80% power to detect abemaciclib superiority, with a cumulative 2-sided type I error of 0.05
- Biomarker ctDNA analyzed by GuardantINFINITY assay

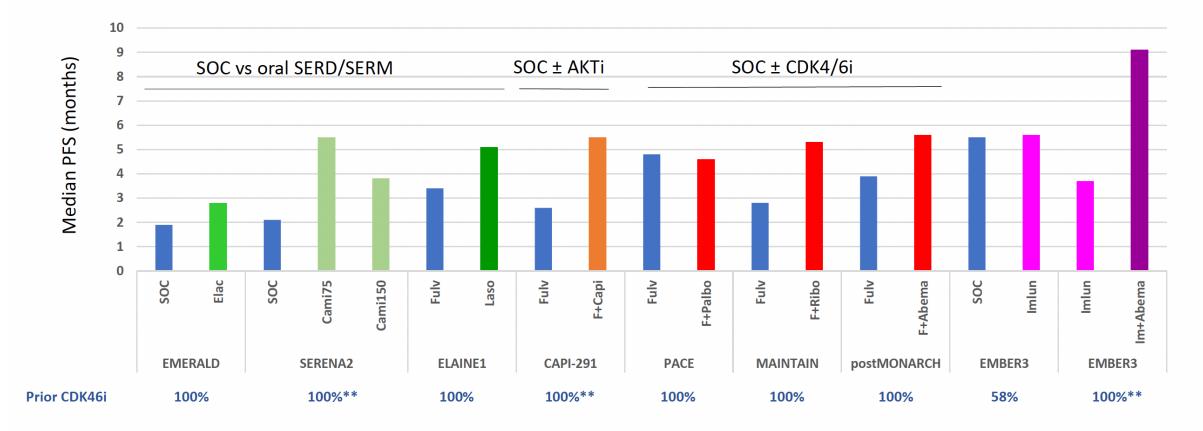

Patient characteristics

		Abemaciclib + Fulvestrant N=182 (%)	Placebo + Fulvestrant N=186 (%)
Age	Median (range)	58 (27, 86)	61 (28, 85)
	< 65 years	69	63
	\geq 65 years	31	37
Gender	Female	99	100
ECOG	0	57	58
	1	43	43
Region	Other (includes EU)	73	72
	Asia	12	13
	USA	15	15
Race	White	82	82
	Asian	12	15
Bla	nck/African American	4	2
Ethnicity	Not Hispanic/Latino	74	77
	Hispanic/Latino	15	15
HR Status	ER+	100	99
	י סח	70	01

		Abemaciclib + Fulvestrant N=182 (%)	Placebo + Fulvestant N=186 (%)
Measurable Disease		72	68
Visceral metastasis		62	59
Site of Metastasis	Liver	37	38
	Bone-Only	18	23
Prior CDK4/6i Setting	ABC	100	98
	Adjuvant	0	2
Prior CDK4/6i	Palbociclib	59	59
	Ribociclib	34	33
	Abemaciclib	8	8
Prior CDK4/6i Duration	≥12 months [*]	71	77
	<12 months [^]	29	22
	All	19 (2, 110)	21 (3, 87)
Median Prior CDK4/6i	Palbociclib	19	23
Duration (mo; range)#	Ribociclib	15	18
	Abemaciclib	26	21

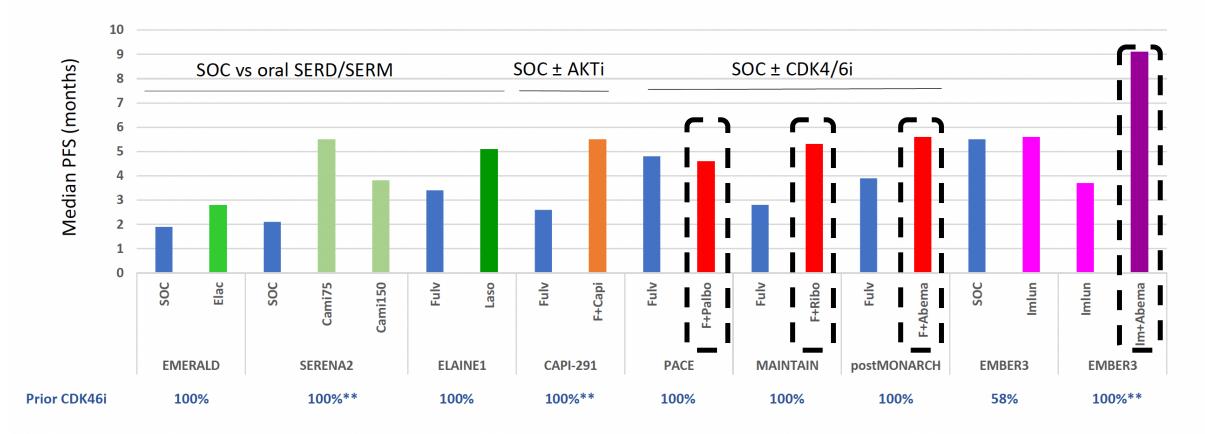

Fulvestrant plus abemaciclib improves PFS when compared to fulvestrant after prior CDK4/6i (mostrly palbociclib or ribociclib)

Investigator-assessed PFS


Abemaciclib: 27% reduction in PFS risk

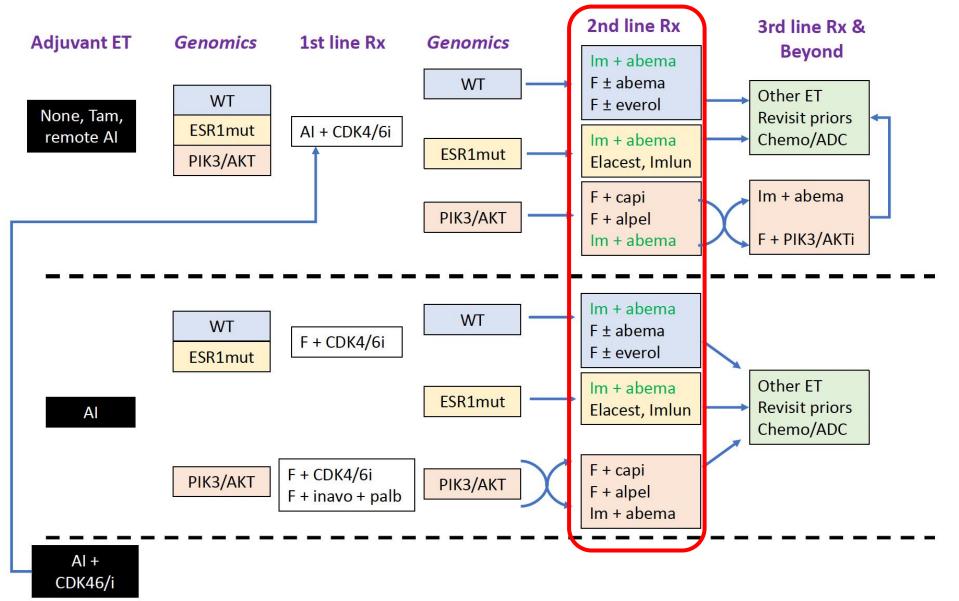
Blinded-independent central review (BICR)

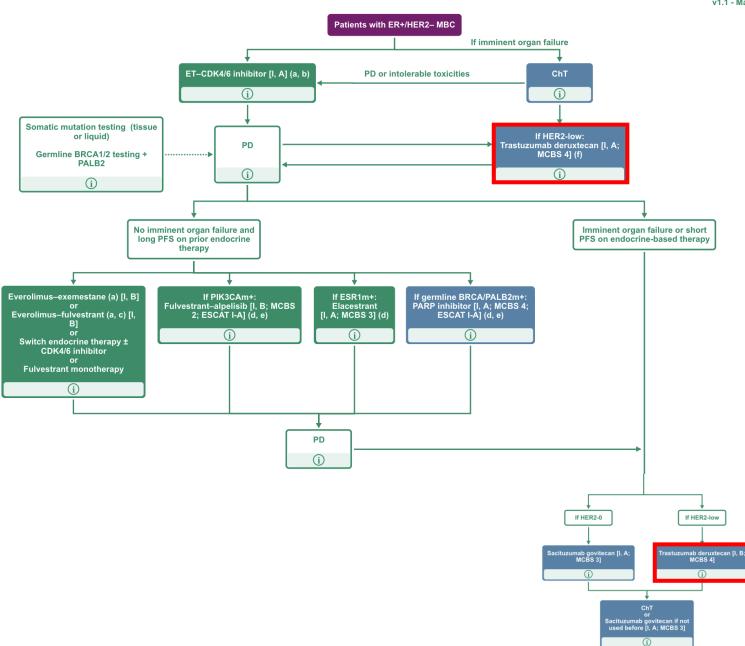
Abemaciclib: 45% reduction of BICR PFS risk


Median PFS in recent RCTs of endocrine therapy: sub-analysis in patients with prior CDK4/6i therapy

*there are a lot of problems with cross study comparisons, especially in unplanned subset analyses: extent/types of prior therapy, variable tumor genomics/biomarker profile, SOC options, sample size, exposure vs resistance, investigator vs BICR, etc.

** Denotes subset of larger study cohort


Median PFS in recent RCTs of endocrine therapy: sub-analysis in patients with prior CDK4/6i therapy


*there are a lot of problems with cross study comparisons, especially in unplanned subset analyses: extent/types of prior therapy, variable tumor genomics/biomarker profile, SOC options, sample size, exposure vs resistance, investigator vs BICR, etc.

** Denotes subset of larger study cohort

Imlunestrant + abemaciclib could become a preferred second-line treatment option regardless of tumor genomics and endocrine sensitivity

Subsequent lines of therapy

v1.1 - May 2023

Trastuzumab deruxtecan vs physician's choice of chemotherapy in patients with hormone receptor–positive, human epidermal growth factor receptor 2 (HER2)–low or HER2-ultralow metastatic breast cancer with prior endocrine therapy: primary results from DESTINY-Breast06

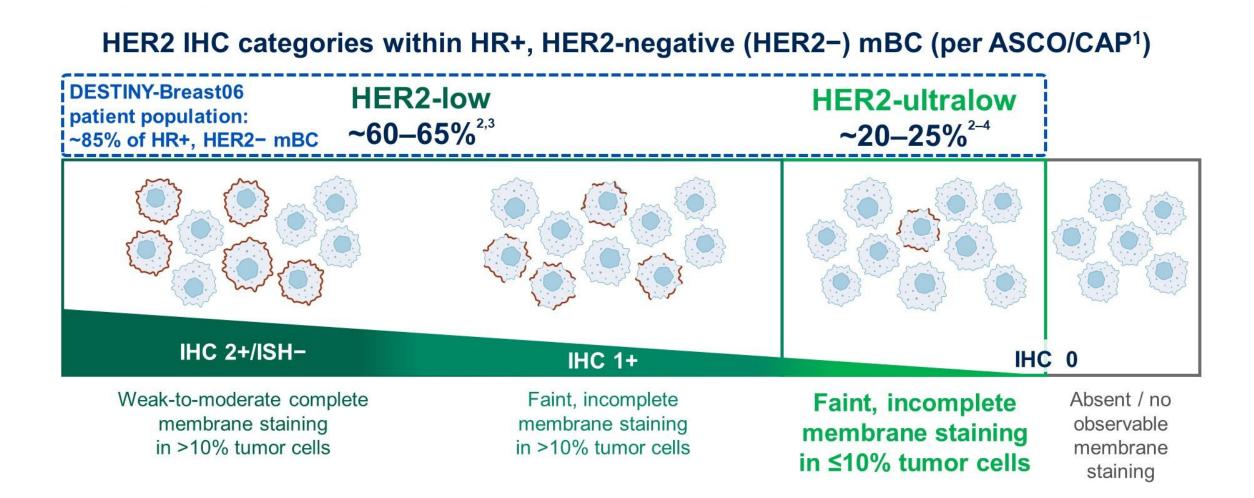
Giuseppe Curigliano

European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Italy

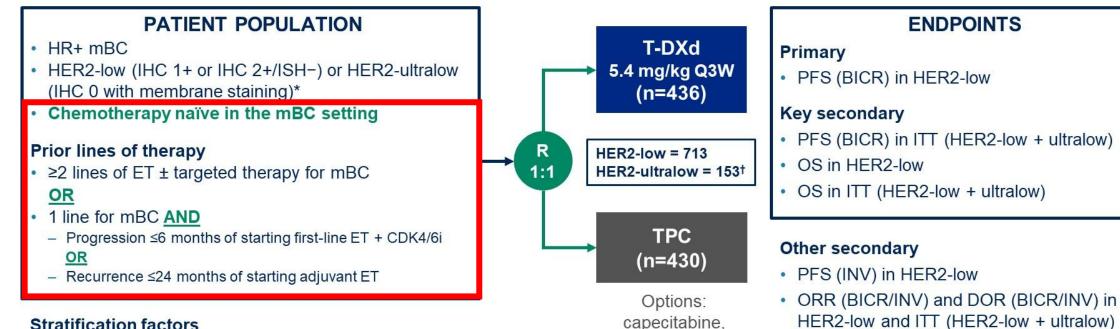
Sunday, June 2, 2024

2024 ASCO

Additional authors: Xichun Hu, Rebecca Dent, Kan Yonemori, Carlos H Barrios, Joyce A O'Shaughnessy, Hans Wildiers, Qingyuan Zhang, Seock-Ah Im, Cristina Saura, Laura Biganzoli, Joohyuk Sohn, Christelle Lévy, William Jacot, Natasha Begbie, Jun Ke, Gargi Patel, Aditya Bardia


On behalf of the DESTINY-Breast06 investigators

#ASCO24 PRESENTED BY: Giuseppe Curigliano, MD, PhD Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org



Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Re-defining the biology of HR+/HER2 BC

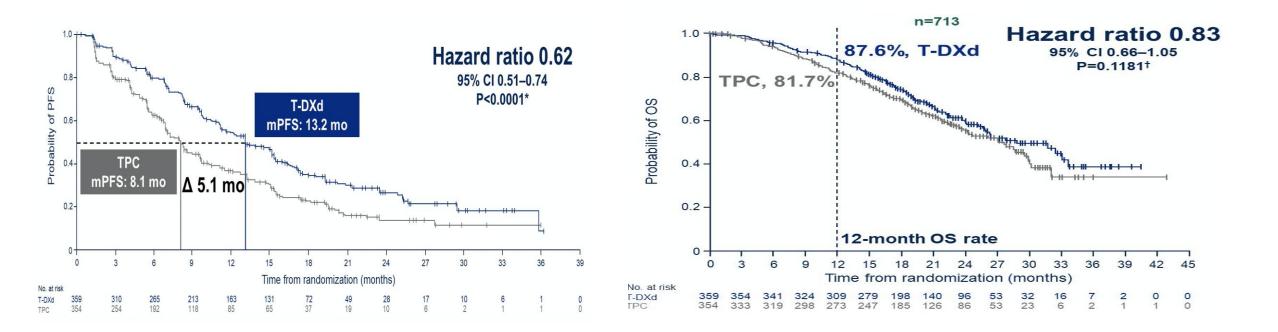
DESTINY Breast06 study design

nab-paclitaxel,

paclitaxel

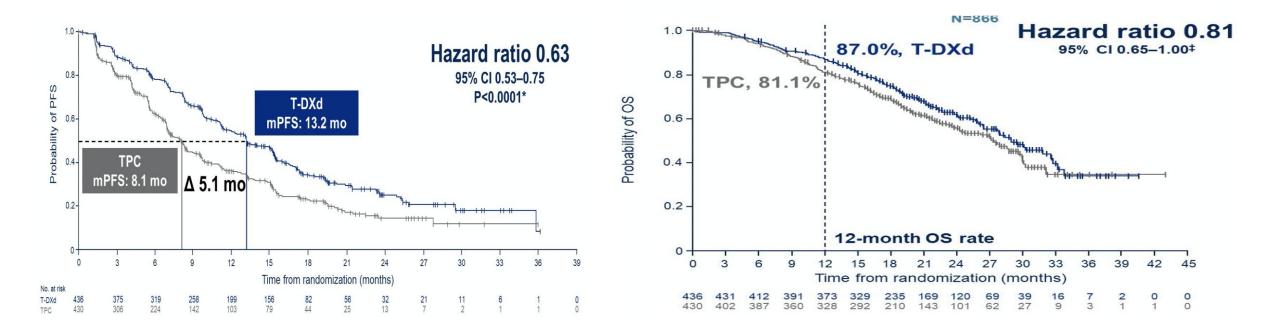
Stratification factors

- Prior CDK4/6i use (yes vs no)
- HER2 expression (IHC 1+ vs IHC 2+/ISH- vs IHC 0 with membrane staining)
- Prior taxane in the non-metastatic setting (yes vs no)


Patient-reported outcomes[‡]

The majority of patients (~two thirds) received 2 lines of endocrine therapy

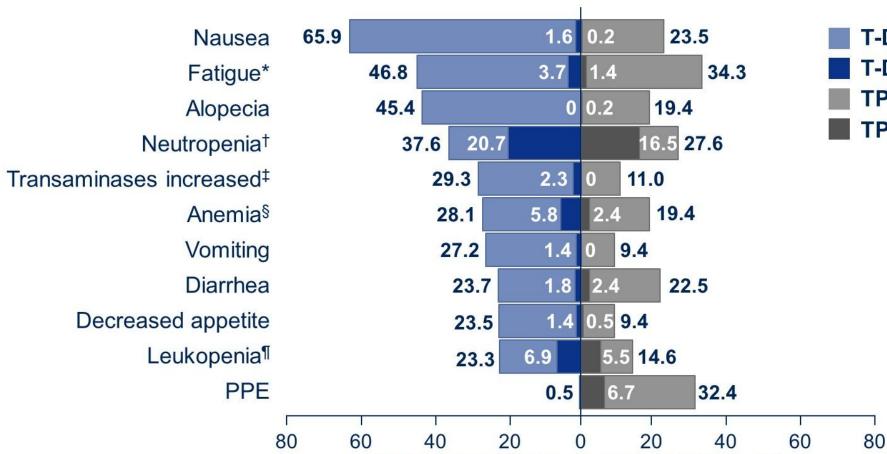
9


	HER2-low*			ГТ HER2-ultralow)	HER2-ultralow*	
	T-DXd (n=359)	TPC (n=354)	T-DXd (n=436)	TPC (n=430)	T-DXd (n=76)	TPC (n=76)
ET in the metastatic setting						
Lines of ET						
Number of lines, median (range)	2.0 (1-4)	2.0 (1-5)	2.0 (1-4)	2.0 (1-5)	2.0 (1-4)	2.0 (1-5)
Number of lines, n (%)						
1	54 (15.1)	67 (19.0)	65 (14.9)	82 (19.2)	11 (14.5)	15 (19.7)
<6 months on first-line FT + CDK4/6i	33 (9 2)	33 (9 4)	37 (8 5)	40 (9 3)	4 (5 3)	7 (9 2)
2	242 (67.6)	236 (67.0)	295 (67.8)	288 (67.3)	52 (68.4)	52 (68.4)
23	62 (17.3)	49 (13.9)	75 (17.2)	58 (13.6)	13 (17.1)	9 (11.8)
Prior therapies, n (%)						
ET monotherapy	189 (52.6)	183 (51.7)	230 (52.8)	223 (51.9)	41 (53.9)	40 (52.6)
ET with CDK4/6i	318 (88.6)	316 (89.3)	388 (89.0)	385 (89.5)	69 (90.8)	69 (90.8)
ET with other targeted therapy [†]	120 (33.4)	105 (29.7)	143 (32.8)	127 (29.5)	22 (28.9)	22 (28.9)
Adjuvant/neoadjuvant setting [‡]						
Prior therapies, n (%)						
ET	227 (63.2)	218 (61.6)	275 (63.1)	256 (59.5)	48 (63.2)	38 (50.0)
Cytotoxic chemotherapy	192 (53.5)	196 (55.4)	228 (52.3)	234 (54.4)	36 (47.4)	38 (50.0)
Taxane	151 (42.1)	151 (42.7)	179 (41.1)	177 (41.2)	28 (36.8)	26 (34.2)
Anthracycline	167 (46.5)	173 (48.9)	197 (45.2)	206 (47.9)	30 (39.5)	33 (43.4)

T-DXd improves PFS when compared to physician choice therapy in patients with HER2-low disease, with a trend towards improved OS

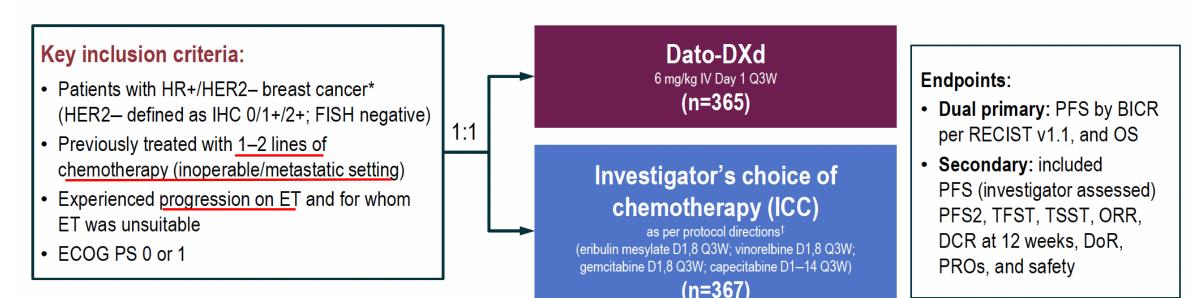
OS data: ~40% maturity

T-DXd improves PFS when compared to physician choice therapy in ITT patients (HER2-low/ultra-low), with a trend towards improved OS



OS data: ~40% maturity

T-DXd improves PFS in all clinically relevant subgroups

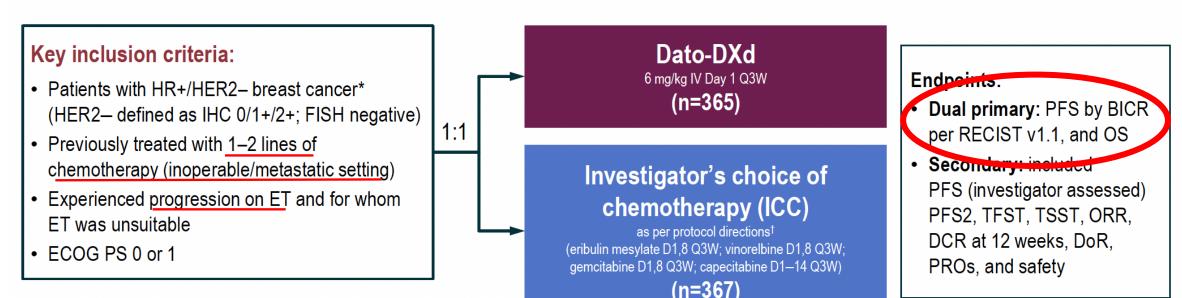

	No. of events / I	no. of patients	mPFS (95%	CI), months		
	T-DXd	TPC	T-DXd	TPC	Hazard ratio (95%	CI)
Age						•
<65 years	158/252	157/244	13.2 (11.2–15.2)	7.8 (6.9-8.6)	H H H	0.59 (0.47-0.74)
≥65 years	67/107	75/110	13.2 (9.7-17.0)	8.5 (6.9-11.5)	⊢ ●−−1	0.68 (0.49-0.95)
HER2 status*						
IHC 1+	157/238	150/234	12.9 (11.0-15.2)	8.2 (7.1-9.8)	H O H!	0.74 (0.59-0.93)
IHC 2+/ISH-	65/117	80/118	15.2 (12.2-21.4)	7.0 (6.2-8.4)		0.43 (0.31-0.60)
Prior CDK4/6i						
Yes	206/324	212/320	13.1 (11.2–15.2)	7.9 (6.9-8.6)	H H H	0.61 (0.51-0.74)
No	19/35	20/34	16.1 (9.7-NE)	11.1 (6.9-20.6)		0.64 (0.34-1.21)
Prior taxane use (adjuvant/neoadjuvant setting)						
Yes	94/151	101/151	12.9 (9.7-14.0)	7.4 (6.3–9.3)	⊢ ●→ ¦	0.64 (0.48-0.85)
No	131/208	131/203	15.0 (11.3–16.5)	8.3 (7.0-9.7)		0.59 (0.46-0.76)
Number of prior lines of ET (metastatic setting)					- I	
1	27/54	45/67	15.2 (9.7-19.1)	8.0 (5.7-8.5)	⊢−−● −− 1	0.45 (0.27-0.72)
2	158/242	153/236	13.1 (11.2–15.2)	8.3 (6.9-10.0)	H H	0.69 (0.55-0.86)
≥3	39/62	33/49	12.3 (8.3-18.5)	8.1 (5.4-9.7)	F	0.53 (0.33-0.86)
Endocrine resistance						
Primary	66/105	83/116	13.1 (10.0–15.2)	6.8 (5.3-8.1)		0.56 (0.40-0.78)
Secondary	159/254	148/236	13.2 (11.3–15.5)	9.0 (7.5–11.1)	HOH :	0.65 (0.52-0.82)
Choice of chemotherapy [†]			,	,		,
Capecitabine	131/220	134/208	13.5 (11.4–15.4)	8.5 (7.0-11.4)	H + + + +	0.62 (0.49-0.79)
Taxanes (Nab-paclitaxel + paclitaxel)	94/139	98/146	12.9 (9.6-15.4)	7.3 (6.4-8.3)		0.62 (0.46-0.82)
Liver metastases						
Yes	163/243	166/232	11.4 (9.8–13.2)	7.0 (6.4-8.1)	H O H	0.58 (0.46-0.72)
No	62/116	66/122	17.0 (15.0–19.4)	11.3 (8.2–14.8)	—	0.66 (0.46-0.93)
			,	, ,		- , ,
					0.25 0.5 1 2	
					Favors T-DXd Favors TPC	

T-DXd is associated with higher rates of adverse events when compared to chemotherapy

T-DXd, any grade
T-DXd, Grade ≥3
TPC, any grade
TPC, Grade ≥3

TROPION-Breast01 Study Design¹ Randomised, phase 3, open-label, global study (NCT05104866)

Randomisation stratified by:


- Lines of chemotherapy in inoperable/metastatic setting (1 vs 2)
- Geographic location (USA/Canada/Europe vs other geographic regions)
- Treatment continued until PD, unacceptable tolerability, or other discontinuation criteria

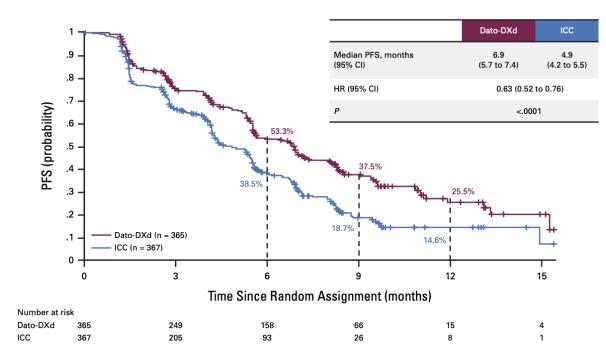
- Previous CDK4/6 inhibitor (yes vs no)
- Statistical considerations: Study deemed positive if either of the dual primary endpoints (PFS by BICR or OS) were statistically significant

Detailed description of the statistical methods published previously.¹ *Per American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) guidelines. [†]ICC was administered as follows: eribulin mesylate, 1.4 mg/m² IV on Days 1 and 8, Q3W; capecitabine, 1000 or 1250 mg/m² orally twice daily on Days 1 to 14, Q3W (dose per standard institutional practice); vinorelbine, 25 mg/m² IV on Days 1 and 8, Q3W; or gencitabine, 1000 mg/m² IV on Days 1 and 8, Q3W. CDK4/6, cyclin-dependent kinase 4/6; D, day; DCR, disease control rate; DoR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; ET, endocrine therapy; FISH, fluorescent in-situ hybridisation; IHC, immunohistochemistry; IV, intravenous; PD, progressive disease; PFS2, time to second progression or death; PRO, patient-reported outcome; RECIST, Response Evaluation Criteria in Solid Tumors; TFST, time to first subsequent therapy; TSST, time to second subsequent therapy.

1. Bardia A, et al. Future Oncol 2024;20:423–36.

TROPION-Breast01 Study Design¹ Randomised, phase 3, open-label, global study (NCT05104866)

Randomisation stratified by:


- Lines of chemotherapy in inoperable/metastatic setting (1 vs 2)
- Geographic location (USA/Canada/Europe vs other geographic regions)
- Treatment continued until PD, unacceptable tolerability, or other discontinuation criteria

- Previous CDK4/6 inhibitor (yes vs no)
- Statistical considerations: Study deemed positive if either of the dual primary endpoints (PFS by BICR or OS) were statistically significant

Detailed description of the statistical methods published previously.¹ *Per American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) guidelines. †ICC was administered as follows: eribulin mesylate, 1.4 mg/m² IV on Days 1 and 8, Q3W; capecitabine, 1000 or 1250 mg/m² orally twice daily on Days 1 to 14, Q3W (dose per standard institutional practice); vinorelbine, 25 mg/m² IV on Days 1 and 8, Q3W; or gemcitabine, 1000 mg/m² IV on Days 1 and 8, Q3W. CDK4/6, cyclin-dependent kinase 4/6; D, day; DCR, disease control rate; DoR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; ET, endocrine therapy; FISH, fluorescent in-situ hybridisation; IHC, immunohistochemistry; IV, intravenous; PD, progressive disease; PFS2, time to second progression or death; PRO, patient-reported outcome; RECIST, Response Evaluation Criteria in Solid Tumors; TFST, time to first subsequent therapy; TSST, time to second subsequent therapy.

1. Bardia A, et al. Future Oncol 2024;20:423–36.

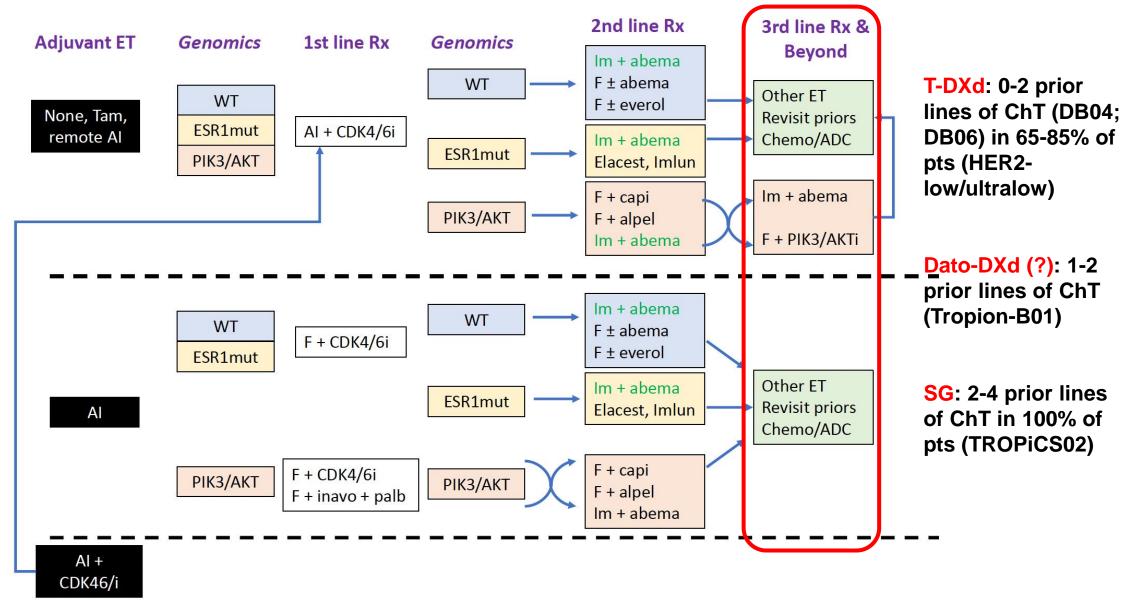
Dato-DXd improves patient PFS when compared to physician choice chemotherapy regardless of clinically relevant covariates

		No. of even Dato-DXd	ts/N (%) ICC		HR (95% CI)
All patients		212/365 (58.1%)	235/367 (64%)	H H H	0.63 (0.52 to 0.76)
No. of previous	1	128/229 (55.9%)	145/225 (64.4%)	 -1	0.65 (0.51 to 0.83)
lines of chemotherapy	2	84/135 (62.2%)	90/141 (63.8%)	⊢	0.60 (0.45 to 0.81)
Geographic region	The United States, Canada, Europe	110/186 (59.1%)	112/182 (61.5%)	⊢ ⊶	0.62 (0.48 to 0.81)
	Other geographic regions	102/179 (57%)	123/185 (66.5%)	┝━━━┥	0.66 (0.50 to 0.85)
Previous use of	Yes	177/304 (58.2%)	192/300 (64%)	⊢ ●-1	0.62 (0.50 to 0.76)
the CDK4/6 inhibitor	No	35/61 (57.4%)	43/67 (64.2%)	F===+1	0.73 (0.46 to 1.14)
Previous use of	≤12 months	95/151 (62.9%)	92/136 (67.6%)	⊢	0.61 (0.45 to 0.81)
the CDK4/6 inhibitor	>12 months	82/153 (53.6%)	100/164 (61%)	⊢	0.61 (0.45 to 0.82)
Previous use of endocrine therapy in	<6 months	23/40 (57.5%)	34/49 (69.4%)	F	0.58 (0.34 to 0.99)
the metastatic setting	≥6 months	161/282 (57.1%)	174/277 (62.8%)	⊢●⊣	0.62 (0.50 to 0.77)
	Taxanes alone	54/91 (59.3%)	59/85 (69.4%)	F	0.61 (0.42 to 0.89)
Previous use of taxanes	Anthracyclines alone	19/24 (79.2%)	20/28 (71.4%)	F	0.48 (0.24 to 0.93)
and/or anthracyclines	Both taxanes and anthracyclines	117/204 (57.4%)	129/211 (61.1%)	⊢ ●-	0.69 (0.54 to 0.89)
	Neither taxanes nor anthracyclines	22/46 (47.8%)	27/43 (62.8%)	⊢	0.45 (0.24 to 0.81)
Age at random	<65	163/274 (59.5%)	190/295 (64.4%)	⊢● -1	0.64 (0.52 to 0.79)
assignment, years	≥65	49/91 (53.8%)	45/72 (62.5%)	F	0.65 (0.43 to 0.97)
Race	Asian ^a	88/146 (60.3%)	101/152 (66.4%)	⊢ •−1	0.70 (0.52 to 0.93)
have	Non-Asian	109/187 (58.3%)	119/183 (65%)	⊢ ●-1	0.59 (0.45 to 0.76)
Brain metastases	Yes	26/35 (74.3%)	15/23 (65.2%)	, , , , , , , , , , , , , , , , , , ,	0.73 (0.39 to 1.42)
at baseline	No	186/330 (56.4%)	220/344 (64%)	H - -1	0.62 (0.51 to 0.75)
ECOG PS	0	119/197 (60.4%)	136/220 (61.8%)	H1	0.73 (0.57 to 0.94)
	1	91/165 (55.2%)	98/145 (67.6%)		0.52 (0.38 to 0.69)
			0.125		.5 2 2.53 4 5
			-	HR – Favors Dato-DXd I	Favors ICC

Dato-DXd does not result in OS improvement when compared to chemotherapy

1.0 -Dato-DXd ICC Dato-DXd ICC 0.9 0.9 OS events, n (%) 223 (61) 213 (58) OS events, n (%) 213 (58) 0.8-223 (61) 0.8 Median OS, months 18.6 18.3 **Brobability of OS** 9.0 0. 0. 18.6 0.7 Median OS, months 18.3 Probability of OS (95% CI) (17.3-20.1) (17.3-20.5) (95% CI) (17.3–20.1) (17.3–20.5) HR (95% CI) 1.01 (0.83-1.22) HR (95% CI) 1.01 (0.83-1.22) 0.4 0.3. 0.3 -• Maturity: 59.6% Maturity: 59.6% 0.2 0.2 · Median follow-up: 22.8 months Median follow-up: 22.8 months - Dato-DXd (n=365) Dato-DXd (n=365) 0 0.1 ICC (n=367 Protocol prespecified OS sensitivity ICC (n=367) · Protocol prespecified OS sensitivity analysis based on the stratification analysis based on the stratification 36 33 12 18 21 24 27 30 33 36 15 factors according to the eCRF*: factors according to the eCRF*: Time from randomisation (months) Time from randomisation (months) Number at risk HR 0.99 (95% CI: 0.82-1.20) Number at risk HR 0.99 (95% CI: 0.82-1.20) 259 Dato-DXd 365 349 331 299 227 180 118 12 Dato-DXd 331 299 259 227 ICC 367 335 309 283 249 213 175 123 175 309 283 249 213 123 51

Overall survival adjusted for subsequent ADCs


Data cutoff: 24 July 2024. Pre-specified P-value boundary for OS analysis: α=0.0427

Overall survival

*Mis-stratification between interactive response technology (where data entered could not be changed by the site) and eCRF (where data could be corrected by sites) was <5%. eCRF, electronic case report form. Data cutoff: 24 July 2024. Pre-specified P-value boundary for OS analysis: α =0.0427

*Mis-stratification between interactive response technology (where data entered could not be changed by the site) and eCRF (where data could be corrected by sites) was <5%. eCRF, electronic case report form.

Imlunestrant + abemaciclib could become a preferred second-line treatment option regardless of tumor genomics and endocrine sensitivity

breast Dicusi Journal Club

L'IMPORTANZA DELLA RICERCA IN ONCOLOG

7-8 MARZO 2025 NAPOLI

Thank you for your attention!

Email contacts

claudio.vernieri@istitutotumori.mi.it claudio.vernieri@unimi.it claudio.vernieri@ifom.eu