Stable breast br

L'IMPORTANZA DELLA RICERCA IN ONCOLOG

7-8 MARZO 2025 NAPOLI

Hotel Royal Continental Via Partenope, 38

Intro e place in therapy best papers nazionale **Disclosures:**

La sottoscritta Sanò Maria Vita

in qualità di relatore

ai sensi dell'art. 76 sul Conflitto di Interessi, comma 4 dell'Accordo Stato-Regioni del 2 febbraio 2017 e del paragrafo 4.5. del Manuale nazionale di accreditamento per l'erogazione di eventi ECM

dichiara

che negli ultimi due anni ha avuto i seguenti rapporti anche di finanziamento con soggetti portatori di interessi commerciali in campo sanitario:

Pfizer, Novartis, Eli-lilly, Gilead, Istituto Gentili, Daiichi Sankyo, Astra Zeneca

Best paper nazionale 1

ORIGINAL ARTICLE

Early prediction of endocrine responsiveness in ER + /HER2-negative metastatic breast cancer (MBC): pilot study with ¹⁸F-fluoroestradiol (¹⁸F-FES) CT/PET^{\sim}

A. Gennari^{1,2*}, E. Brain³, A. De Censi⁴, O. Nanni⁵, R. Wuerstlein⁶, A. Frassoldati⁷, J. Cortes^{8,9}, V. Rossi², M. Palleschi¹⁰, J. L. Alberini¹¹, F. Matteucci¹², A. Piccardo¹³, G. Sacchetti¹⁴, H. Ilhan¹⁵, F. D'Avanzo², B. Ruffilli¹, S. Nardin¹⁶, M. Monti⁵, M. Puntoni¹⁷, V. Fontana¹⁸, L. Boni¹⁸ & N. Harbeck⁶, on behalf of the ET-FES Collaborative Group[†]

Background

✓ Patients with metastatic HR positive breast cancer typically receive CDK4/6 inhibitor

combined with endocrine therapy as their first-line treatment.

- ✓ While most patients see prolonged PFS, some still experience rapid progression.
- ✓ Endocrine resistance often stems from the **heterogeneity of ER expression**.
- ✓ Previously, we lacked methods to assess **whole-body ER levels** in advanced tumors.

18F-FES PET/CT : *Provides evaluation of whole-body ER expression*

- [18F]-fluoroestradiol (**18F-FES)** is a radiolabeledform of estrogen that binds to ER
- 18F-FES- PET/CT enables non-invasive assessment of ER expression and heterogeneity in ABC lesions.
- 18F-FES detects ER that is **functional** for ligand binding
- This information may guide therapy selection , potentially reducing the use of ineffective endocrine therapies in HR+/HER2- mBC.
- 18F-FES PET/TC is approved by the FDA as a diagnostic agent "for the detection of ER-positive lesions as an

adjunct to biopsy in patients with recurrent or metastatic breast cancer.

Appropriate Use Criteria for Estrogen Receptor-Targeted PET Imaging with 18F-FES

Clinical	Scenarios	for Breast	Cancer
----------	-----------	------------	--------

L'IMPORTANZA DELLA RICERCA IN ONCOLOG

SOCIETY OF

HR+ mBC current options

PD

1st line, endocrine sensitive

Endocrine therapy (ET), with AI + CDK4/6 inhibitor

Median PFS: 24 mo. // Overall survival gain

The <u>ESMO-MCBS scores</u> for the use of a CDK4/6 inhibitor combined with ET for ABC patients vary according to the setting and drug.

They are the following, with the current available data and follow-up:

- Ribociclib + ET 1st line Pre-menopausal; ESMO-MCBS: 5
- Ribociclib + AI 1st line Post-menopausal; ESMO-MCBS: 4
- Palbociclib + AI 1st line; ESMO-MCBS: 3
- Abemaciclib + AI 1st line; ESMO-MCBS: 3

Patients who don't benefit from CDK4/6 inhibitors

	patients without clinical benefit	Early progressors
Al-naive		
PALOMA 2	15%	NR
MONARCH 3	22%	4%
MONALEESA 2	20%	6%
AI-pretreated		
PALOMA 3	33%	17%
MONARCH 2	28%	9%
Al-naive and Al-	pretreated	
MONALEESA 3	30%	10%
MONALEESA 7	21%	7%

Finn NEJM 2016; 375: 1925-36; Goetz JClin Oncol 35:3638-3646; 2017; Hortobagyi NEJM 2016: 375: 1738-48; Cristofanilli Lancet Oncol 2016; 17: 425 39; Sledge JCO 2017; 35: 2875-84; Slamon JCO 2018; 36: 2465-72; Tripathy Lancet oncol 2018; 19: 904-15

ET-FES TRIAL

A Gennari et al, Ann Oncol 2024

Characteristics of patients at baseline

Median age (range), years Menopausal status Pre/peri-menopausal Post-menopausal ECOG performance status 0	66 (36-90) 14 (12.4) 99 (66.6)	60 (38-79)	62 (38-87)	65 (36-90)
Menopausal status Pre/peri-menopausal Post-menopausal ECOG performance status 0	14 (12.4)	2 (15 4)		
Pre/peri-menopausal Post-menopausal ECOG performance status 0	14 (12.4)	2 (15 4)		
Post-menopausal ECOG performance status 0	99 (86 6)	2 (13.4)	5 (31.3)	21 (14.8)
ECOG performance status 0	33 (00.0)	11 (84.6)	11 (68.7)	121 (85.2)
0				
	89 (77.9)	10 (76.9)	14 (87.5)	113 (79.6)
1	24 (22.1)	3 (23.1)	2 (12.5)	29 (20.4)
Histology				
Ductal	84 (74.3)	12 (92.3)	11 (68.8)	107 (75.4)
Lobular	19 (16.8)	1 (7.7)	4 (25.0)	24 (16.9)
Other	10 (8.8)	_	1 (6.2)	11 (7.7)
Hormone receptor status				
Positive (>1%)	113 (100.0)	13 (100.0)	16 (100.0)	142 (100.0)
ER >50%	100 (88.5)	13 (100.0)	15 (93.7)	128 (90.1)
FR < 50%	10 (8.9)		1 (6.3)	11 (7.8)
Missing	3 (2.6)	_		3 (2.1)
Disease-free interval	5 (2.6)			5 (2.2)
$DEL \leq 24$ months	11 (9.7)	1 (7.7)	1 (6.3)	13 (9.2)
DFL \geq 24 months	75 (66.4)	9 (69 2)	14 (87.5)	98 (69.0)
NA ^a	27 (23.9)	3 (23.1)	1 (6 2)	31 (21.8)
Median (range) months	98.8 (0.3-360.3)	64.9 (4.2-196.3)	141 6 (2 8-272 3)	89.0 (0.3-360.3)
Metastatic <i>ab initio</i>	27 (23 9)	3 (23 1)	1 (6 2)	31 (21.8)
prior treatment	27 (23.5)	5 (25.1)	1 (0.2)	51 (21.0)
Prior peo/adjuvant ChT	68 (60 3)	0 (60 2)	11 (69 9)	88 (62 0)
Prior adjuvant ET	78 (69.0)	8 (61 5)	12 (00.0)	00 (02.0)
Site of metastases	78 (05.0)	8 (01.5)	15 (61.5)	55 (05.7)
Rope only	41 (26.2)	4 (20.8)	5 (21 2)	50 (35 3)
Bone + other	41 (30.3) 31 (37.4)	4 (50.6)	5 (51.5)	34 (33.2)
Viscoral any	31 (27.4) 39 (33.6)	5 (23.1)	 () 7 ()	34 (23.5)
Soft tissue any	30 (33.0)	5 (38.5)	6 (37.5)	49 (34.5)
Soft tissue any	37 (32.7)	5 (38.5)	6 (37.5)	48 (33.8)

Ch1, chemotherapy; DFI, disease-free interval; ECUG, Eastern Cooperative Oncology Group; E1, endocrine therapy; EK, estrogen receptor; NA, not appl

A Gennari et al, Ann Oncol 2024

Results

breast Journal

HR+ mBC current options

HR+ mBC : Current options

DESTINY-Breast06 study design and primary results

Phase 3, randomized, multicenter, open-label study^{1,2}

Data cutoff: March 18, 2024

PFS by time to progression on 1L ET + CDK4/6i and endocrine resistance

	Primary endoci	rine resistance [‡]	Secondary endocrine resistance [‡]		
	T-DXd (n=128)	TPC (n=140)	T-DXd (n=308)	TPC (n=288)	
mPFS, mo (95% CI)	FS, mo (95% CI) 12.4 (10.3, 15.2)		13.2 (12.0, 15.5)	9.5 (8.0, 11.1)	
PFS hazard ratio (95% CI)	0.57 (0.42, 0.77)†		0.68 (0.55, 0.84)†		

T-DXd improved PFS vs TPC regardless of time to progression on 1L ET + CDK4/6i or type of endocrine resistance

HR+ mBC : Current options

FLUORO-ESTRADIOL PET/CT

Clinical Validity of 16α-[¹⁸F] Fluoro-17β-Estradiol Positron Emission Tomography/Computed Tomography to Assess Estrogen Receptor Status in Newly Diagnosed Metastatic Breast Cancer

Jasper J.L. van Geel, MD¹; Jorianne Boers, MD¹; Sjoerd G. Elias, MD, PhD²; Andor W.J.M. Glaudemans, MD, PhD¹; Erik F.J. de Vries, PhD²; Geke A.P. Hospers, MD, PhD¹; Michel van Kruchten, MD, PhD¹; Evelien J.M. Kuip, MD, PhD⁴; Agnes Jager, MD, PhD⁵; Willemien C. Menke-van der Houven van Oordt, MD, PhD⁶; Bert van der Vegt, MD, PhD⁷; Elisabeth G.E. de Vries, MD, PhD⁵; and Carolina P. Schröder, MD, PhD⁶ nehalf of the IMPACT-Metastatic Breast Consortium

Participants (n = 181)

	ER IHC Status of the Biopsied Lesion			
Result	Positive ($n = 132$)	Negative $(n = 49)$		
Whole-body [18F]FES-PET result				
Positive (n = 135)	125	10		
Negative (n = 46)	7	39		
Sensitivity	95 (89 to 97)			
Specificity	80 (66 to 89)			
PPV	93 (87 to 96)			
NPV	85 (72 to 92)			

→ should detect accurately the ~15-20% of mBC pts with ER loss at time of progression

[¹⁸F]fluoroestradiol (FES) PET/CT to guide 2nd line treatment decision in patients with ER+ HER2- advanced breast cancer progressing on 1st line aromatase inhibitor and CDK4/6 inhibitor: early results of the ESTROTIMP trial

François-Clément Bidard^{1,2}, Romain-David Seban¹, Stephanie van de Ven³, Sylvain Ladoire⁴, Audrey Bellesoeur², Sandrine Parisse-Di Martino⁵, Olivier Humbert⁶, Thibaut Cassou-Mounat⁷, Emmanuel Deshayes⁸, Loic Djaileb⁹, Khaldoun Kerrou¹⁰, Eve Piekarski¹¹, Elise Deluche¹², Alexandre Cochet⁴

Institut Curie, Saint Cloud, France; ²Institut Curie, Paris, France; ³GE HealthCare; ⁴Centre George François Leclerc, Dijon, France; ⁵Centre Léon Bérard, Lyon, France; ⁶Centre Antoine Lacassagne, Nice, France; ⁷IUCT-Oncopole Claudius Regaud Toulouse, France; ¹⁰Hôpital Américain, Paris, France; ¹²Centre Hospitalier Universitaire de Grenoble, France; ¹⁰Hôpital Tenon, Paris, France; ¹¹Hôpital Américain, Paris, France; ¹²Centre Hospitalier Universitaire de Grenoble, France; ¹⁰Hôpital Tenon, Paris, France; ¹¹Hôpital Américain, Paris, France; ¹²Centre Hospitalier Universitaire de Limoges, France; ¹⁰Hôpital Tenon, Paris, France; ¹¹Hôpital Américain, Paris, France; ¹²Centre Hospitalier Universitaire de Limoges, France; ¹⁰Hôpital Tenon, Paris, France; ¹¹Hôpital Américain, Paris, France; ¹²Centre Hospitalier Universitaire de Limoges, France; ¹⁰Hôpital Tenon, Paris, France; ¹¹Hôpital Américain, Paris, France; ¹²Centre Hospitalier Universitaire de Limoges, France; ¹⁰Hôpital Tenon, Paris, France; ¹⁰Hôpital Tenon, Paris, France; ¹²Centre Hospitalier Universitaire de Limoges, France; ¹⁰Hôpital Tenon, Paris, France; ¹⁰Centre Hospitalier Universitaire de Limoges, France; ¹⁰Hôpital Tenon, Paris, France; ¹⁰Centre Hospitalier Universitaire de Limoges, France; ¹⁰Hôpital Tenon, Paris, France; ¹⁰Hôpital Centre Hospitalier Universitaire de Limoges, France; ¹⁰Hôpital Centre Hospitalier Universitai

San Antonio Breast Cancer Symposium December 10-13, 2024

PS11-02

Study Design

- ESTROTIMP is an ongoing multicenter, single arm, Phase IV clinical trial in France, prospectively enrolling 152 patients after disease progression on 1st line AI+CDK4/6i. (Re)biopsy at time of progression was not a requirement for enrollment.
- Purpose of ESTROTIMP is to **document the impact of FES PET/CT on therapeutic management** in patients who have already undergone standard of care [¹⁸F]fluorodeoxyglucose (FDG) PET/CT, using a before/after comparison.
- **Before FES PET/CT:** Treating oncologists prospectively record their planned therapeutic management before FES PET/CT. Patients score pain and apprehension for biopsy, recalling their most recent biopsy.
- After FES PET/CT: Treating oncologists record their final therapeutic management incorporating FES PET/CT results (local read, compared with FDG PET/CT results). Note: therapeutic decisions are left up to the oncologists, the protocol does not mandate management changes based on FES PET/CT results. Patients are followed to document PFS achieved for this treatment line. Patients score pain and apprehension for FES PET/CT.
- Primary endpoint is the impact of FES PET/CT as measured by % of changes in therapeutic management after FES PET/CT as compared to before FES PET/CT. Key secondary endpoints (not reported here) include FES PET/CT parameters associated with change in management, 2nd line PFS, and QoL. A retrospective matched cohort of 152 pts without FES PET/CT will be used to compare 2nd line PFS.
- We present the results of a planned interim analysis of the first 30 patients evaluable for the primary endpoint.

NCT05486182 | EUDRACT 2021-003601-21

VAS: Visual Analog Scale; QoL: Quality of Life (questionnaire); PFS: Progression-Free Survival

[¹⁸F]fluoroestradiol (FES) PET/CT to guide 2nd line treatment decision in patients with ER+ HER2- advanced breast cancer progressing on 1st line aromatase inhibitor and CDK4/6 inhibitor: early results of the ESTROTIMP trial

François-Clément Bidard^{1,2}, Romain-David Seban¹, Stephanie van de Ven³, Sylvain Ladoire⁴, Audrey Bellesoeur², Sandrine Parisse-Di Martino⁵, Olivier Humbert⁶, Thibaut Cassou-Mounat⁷, Emmanuel Deshayes⁸, Loic Djaileb⁹, Khaldoun Kerrou¹⁰, Eve Piekarski¹¹, Elise Deluche¹², Alexandre Cochet⁴

Institut Curie, Saint Cloud, France; ²Institut Curie, Paris, France; ³GE HealthCare; ⁴Centre George François Leclerc, Dijon, France; ⁵Centre Léon Bérard, Lyon, France; ⁶Centre Antoine Lacassagne, Nice, France; ²IOCT-Oncopole Claudius Regaud Toulouse, France; ¹Institut du Cancer de Montpellier, France; ⁹Centre Hospitalier Universitaire de Grenoble, France; ¹⁶Opital Tenon, Paris, France; ¹²Hopital Américain, Paris, France; ¹²Centre Hospitalier Universitaire de Grenoble, France; ¹⁶Opital Tenon, Paris, France; ¹¹Hôpital Américain, Paris, France; ¹²Centre Hospitalier Universitaire de Limoges, France; ¹⁰Opital Tenon, Paris, France; ¹¹Hôpital Américain, Paris, France; ¹²Centre Hospitalier Universitaire de Limoges, France; ¹⁰Opital Tenon, Paris, France; ¹¹Hôpital Américain, Paris, France; ¹²Centre Hospitalier Universitaire de Limoges, France; ¹⁰Opital Tenon, Paris, France; ¹¹Hôpital Américain, Paris, France; ¹²Centre Hospitalier Universitaire de Limoges, France; ¹⁰Opital Tenon, Paris, France; ¹¹Hôpital Américain, Paris, France; ¹²Centre Hospitalier Universitaire de Limoges, France; ¹⁰Opital Tenon, Paris, France; ¹¹Hôpital Américain, Paris, France; ¹²Centre Hospitalier Universitaire de Limoges, France; ¹⁰Opital Fran

San Antonio Breast Cancer Symposium December 10-13, 2024

PS11-02

ER Expression Heterogeneity

11/30 patients (36.7%) had ≥1 FES negative lesion(s) when comparing FES with FDG PET/CT imaging results (local read by investigators)

Interim Analysis Population (N=30)
19 (63.3%)
7 (23.3%)
4 (13.3%)

In 17 of 19 patients without changes in therapeutic management, treating physicians indicated that FES PET/CT helped confirm the initial plan.

 In 2 patients, treating physicians decided not to change from 2nd line endocrine therapy despite the presence of FES-negative lesions; FDG PET/CT showed progressive disease at 3-month follow up in both patients.

Conclusions

ESTROTIMP is the first trial to prospectively document the clinical utility of FES PET/CT to inform therapeutic management in patients with CDK4/6i-resistant ER-positive/HER2-negative ABC, where there is a strong unmet need for predictive biomarkers.

DClub breast Journal

Impact on Therapeutic Management Decision

Therapeutic management was changed based on incorporation of FES PET/CT results in 11/30 pts (36.7%)

	Interim Analysis Population (N=30)
Patients with therapeutic management change	
Number of patients (%)	11 (36.7%)
Confidence interval ^[1]	16.0; 61.6
p-value ^[2]	0.0002
Number of patients with	
Treatment modifications (compared to initial plan before FES PET/CT)	9 (30.0%)
Addition of endocrine therapy	
(e.g., initial plan did not include endocrine therapy and final plan did)	3
Withdrawal of endocrine therapy	
(e.g., initial plan did include endocrine therapy and final plan did not)	3
Change in endocrine therapy (e.g., different molecule / dose)	1
Change in other systemic therapy	1
Addition of radiotherapy	1
Diagnostic modifications (compared to initial plan before FES PET/CT)	5 (16.7%)
Scheduling of biopsy	1
Addition of diagnostic test	1
Not specified	3
Follow-up modifications (compared to initial plan before FES PET/CT)	0 (0%)
^[1] 99% two-sided Exact (Clopper-Pearson) confidence interval – per statistical analysis pl	an for the interim analysis.
^[2] p-value from two-sided Exact test (vs pre-specified futility threshold : change rate of 10	96)
A patient can be counted in more than 1 type of modification (treatment, diagnostic, follo	w-up).
The protocol did not mandate any therapeutic management changes based on FES PET/0	CT results.

18F- FES PET/TC : Place in therapy

• **18F-FES PET/TC** in the **baseline diagnostic work-up** of ER+/HER2- MBC allows the identification of a subset

of patients classified as endocrine resistant based on a mean SUV , where the upfront administration of

first-line tailored therapy can improve outcomes.

- **18F- FES PET /CT** can help to assess HR status in lesions that are difficult to biopsy
- **18F-FES PET/CT** is a helpful tool to **inform therapeutic management decisions** in patients with progression of ER+/HER2- ABC on endocrine based therapy

Best paper nazionale 2

Intermediate clinical endpoints in early-stage breast cancer: an analysis of individual patient data from the Gruppo Italiano Mammella and Mammella Intergruppo trials

Eva Blondeaux,^{a,*} Wanling Xie,^b Luca Carmisciano,^c Silvia Mura,^d Valeria Sanna,^d Michelino De Laurentiis,^c Roberta Caputo,^c Anna Turletti,^f Antonio Durando,^g Sabino De Placido,^h Carmine De Angelis,^h Giancarlo Bisagni,ⁱ Elisa Gasparini,ⁱ Anita Rimanti,^j Fabio Puglisi,^{k,J} Mauro Mansutti,^m Elisabetta Landucci,ⁿ Alessandra Fabi,^o Luca Arecco,^{p,q} Marta Perachino,^{p,q} Marco Bruzzone,^a Luca Boni,^a Matteo Lambertini,^{p,q} Lucia Del Mastro,^{p,q,r} and Meredith M. Regan^{b,r}

Background

- Improving the overall survival (OS) of patients with cancer should be considered the main goal of anticancer treatments
- In randomised trials (RCTs), OS definition (i.e., the elapsed time from randomisation to death) is unique and OS is the **preferred endpoint for regulatory purposes**.
- However, showing OS improvements in RCTs usually require the inclusion of a substantial number of patients and long- term follow-up data
- In the early stage breast cancer setting, intermediate clinical endpoints (ICEs), such as disease-freesurvival (DFS)or invasive-DFS (iDFS), are frequently used as *primary endpoint* in RCTs and OS is often included as *secondary endpoint*.

Results

ICE	Outcome-level surrogacy (OS and ICE are correlated irrespective of treatment)			Trial-level surrogacy (treatment effects on both end points are correlated)		
	Correlation at the patient level		Regression of 8-year OS rate v 5-year ICE rate by trial, Arm, and nodal status (No. of units = 16)		Regression of Log (HR)-OS v Log (HR)-ICE by trial and nodal status (No. of units = 8)	
	No. of events out of 6612 patients included	Kendall's τ (95% CI)	No. of events out of 7718 patients included	R ² (95% CI)	R ² (95% CI)	Regression equation
DFS	1450	0.73 (0.72-0.75)	1855	0.92 (0.79-0.95)	0.54 (0.00-0.76)	Log (HR) _{os} = -0.158 + 0.666*Log (HR) _{DFS}
DDFS	1211	0.80 (0.79-0.82)	1566	0.92 (0.79-0.95)	0.67 (0.05-0.83)	Log (HR) _{OS} = -0.110 + 0.811*Log (HR) _{DDFS}
RFS	1204	0.80 (0.79-0.82)	1558	0.94 (0.83-0.96)	0.66 (0.04-0.82)	Log (HR) _{os} = -0.109 + 0.756*Log (HR) _{RFS}
DRFS	1082	0.85 (0.84-0.86)	1413	0.94 (0.84-0.96)	0.67 (0.05-0.83)	Log (HR) _{os} = -0.082 + 0.791*Log (HR) _{DRFS}
IBCFS	1325	0.77 (0.75-0.78)	1707	0.94 (0.84-0.96)	0.49 (0.00-0.74)	Log (HR) _{os} = -0.147 + 0.617*Log (HR) _{IBCFS}
RFI	900	0.71 (0.69-0.73)	1206	0.95 (0.87-0.97)	0.49 (0.00-0.74)	$Log (HR)_{OS} = -0.114 + 0.531*Log (HR)_{RFI}$
DRFI	767	0.76 (0.74-0.78)	1048	0.94 (0.85-0.97)	0.53 (0.00-0.75)	Log (HR) _{os} = -0.090 + 0.539*Log (HR) _{DRFI}
BCFI	1030	0.67 (0.65-0.69)	1365	0.95 (0.85-0.97)	0.29 (0.00-0.63)	$Log (HR)_{OS} = -0.158 + 0.400*Log (HR)_{BCFI}$
BCFI DES_disease	1030	0.67 (0.65-0.69)	1365	0.95 (0.85-0.97)	0.29 (0.00-0.63)	$Log (HR)_{OS} = -0.158 + 0.400*Log$

DFS, disease-free survival; HR, hazard ratio; ICE, intermediate clinical end point; OS, overall survival; DDFS distant disease-free survival; RFS, recurrence-free survival; DRFS, distant relapse-free survival; RFI, recurrence-free interval; DRFI, distant recurrence-free interval; BCFI, breast cancer-free interval; IBCFS, invasive breast cancer-free survival.

Table 2: Two-condition surrogacy analysis among patients with hormone-receptor positive/HER2-negative breast cancer.

This study provides **evidence supporting** the use of all intermediate clinical endpoints, except for BCFI, defined by STEEP criteria v2.0, as **primary endpoint** in breast cancer adjuvant trials

Treatment of Early-Stage, HR+/HER2- Breast Cancer

The goal of adjuvant treatment is to optimize OS

- Endocrine therapy
 - Tamoxifen
 - Aromatase inhibitors
 - Ovarian Suppression (LHRH analogs) in high-risk prememopausal women
- Chemotherapy
 - Benefit depends on risk for recurrence and biology of the disease (genomic platforms)
- Targeted agents
- Adiuvant CDK 4/6i : Abemaciclib (monarchE)

Ribociclib (Natalee)

monarchE Study Design

*Recruitment from July 2017 to August 2019.

[†]Endocrine therapy of physician's choice [e.g., aromatase inhibitors, tamoxifen, GnRH agonist].

monarchE-Sustained benefit at 5 years

5 years IDFS Benefit in ITT

5 years DRFS Benefit in ITT

Benefit of adjuvant abemaciclib exists regardless of Ki67 status

Rastogi P, et al. JCO. 2024

PRESENTED BY: William Gradishar MD Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org ASCO[®] AMERICAN SOCIETY OI CLINICAL ONCOLOGY KNOWLEDGE CONQUERS CANCER

NATALEE Study Design¹⁻³

Ribociclib 400 mg/d Adult patients with HR+/HER2- EBC 3 wk on/1 wk off Prior ET allowed up to 12 mo for 3 y **Primary End Point** Anatomical stage IIA^a iDFS using STEEP criteria • NO with: · Grade 2 and evidence of high risk Secondary End Points NSAI Recurrence-free survival Ki-67 ≥20% Letrozole or anastrozoled for ≥5 v Distant disease-free survival Oncotype DX Breast Recurrence Score + goserelin in men and OS ≥26 or R 1:1° premenopausal women PROs High risk via genomic risk profiling Safety and tolerability Grade 3 PK • N1 Anatomical stage IIB^a **Exploratory End Points** N0 or N1 Locoregional recurrence-NSAI free Anatomical stage III Letrozole or anastrozoled for ≥5 y survival N0, N1, N2, or N3 + goserelin in men and Gene expression and premenopausal women N=5101^b alterations in tumor ctDNA/ctRNA samples Randomization stratification Anatomical stage: II vs III ct, circulating tumor; EBC, early breast cancer; ET, endocrine therapy; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; iDFS,

Menopausal status: men and premenopausal women vs postmenopausal women Receipt of prior (neo)adjuvant chemotherapy: yes vs no Geographic location: North America/Western Europe/Oceania vs rest of world ct, circulating tumor; EBC, early breast cancer; ET, endocrine therapy; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; IDFS, invasive disease–free survival; N, node; NSAI, nonsteroidal aromatase inhibitor; OS, overall survival; PK, pharmacokinetics; PRO, patient-reported outcome; R, randomized; STEEP, Standardized Definitions for Efficacy End Points in Adjuvant Breast Cancer Trials.

* Enrollment of patients with stage II disease was capped at 40%. ^b 5101 patients were randomized from Jan 10, 2019 to April 20, 2021. ^c Open-label design. ^d Per investigator choice.

1. Slamon D, et al. ASCO 2023. Oral LBA500. 2. Slamon DJ, et al. J Clin Oncol. 2019;37(15 suppl). Abstract TPS597. 3. Slamon DJ, et al. Ther Adv Med Oncol. 2023;15:17588359231178125.

San Antonio Breast Cancer Symposium[®] | @SABCSSanAntonio

iDFS in ITT Population

* An additional 10.9 months of follow-up compared with the protocol-specified final iDFS analysis.

Peter A. Fasching

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Place in therapy

- Because demonstrating an improvement in overall survival in RCTs requires the inclusion of a substantial number of patients and long-term follow-updata, using ICEs in the RCTs is highly attractive with reduced number of patients and length of follow up.
- However, changes in ICEs should be able to predict changes in overall survival.
- This study provides evidence supporting the use of all intermediate clinical endpoints, except for BCFI, defined by STEEP criteria v2.0, as primary endpoint in breast cancer adjuvant trials

