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VELOCITY
Speed of
generating data
Generated in real
time
Online and offline
data
In streams, batch
or bits

The 4 Vs of Biomedical Big Data

VOLUME
Amount of data
generated
Online and offline
transactions
In kilobytes or
terabytes
Saved in records,
tables, files
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Online images and
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Adapted from Khozin, Nat Rev Drug Discov 2017



Real World Data vs Real World Evidence

ﬂal World Data (RWD) are data\

relating to patient health status
and/or the delivery of health care
routinely collected from a variety of
sources

Electronic health records (EHRS)

Medical claims data
Product and disease registries

Patient-generated data, including in-
home settings

Data gathered from other sources,

such as mobile devices, that can

ﬂal World Evidence (RWE) is h

clinical evidence regarding the
usage and potential benefits or
risks of a medical product derived
from analysis of RWD

Generated using different study

designs, including but not limited to
randomized trials (e.g., large simple
trials, pragmatic trials), externally
controlled trials, and observational
studies

inform on health status

>

FDA Definitions



What is an externally controlled trial?

« An externally controlled trial is one in which the control group consists of
patients who are not part of the same randomized study as the group receiving
the investigational agent (i.e., there is no concurrently randomized control

group).
« Challenge: Interpreting time to event endpoints in single arm trials
« Potential solution: use of well constructed external control designs
« Methodological concern: ensuring balance of factors for evaluation in the

absence of randomization

Rivera, FDA Workshop 2021



External controls

Type Temporality

Concurrent control:

Patient population treated during
External control arm the same or similar period,
reflecting a similar standard of

\ j care

Historical control;

Non contemporaneous patient

Synthetic control arm population where retrospective

or retrospectively analysed data
Is used as comparator

- J .

Rivera, FDA Workshop 2021



External control arms

/External control designs \
» Previously conducted clinical trial(s), including pooled trial data

« Historical real-world data (single source)

» Historical real-world data (pooled data)

» Prospective real-world data

« Hybrid prospective designs (e.g., concurrently randomized control as

\ well as external control) /

[ Uses of external controls ]
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Use of external control arms

Rationale for lack of randomization Applications

ﬁVhen randomized trials are: \ Pediatrics

Rare disease

¢ Infeasible or impractical

. _ (Significant unmet medical need (i.e.,\
% Unethical limited treatment options or
. standard of care) )

¢ Lack of equipoise

Molecular subgroups

\ / Under-represented populations

Rivera, FDA Workshop 2021




Real-world

synthetic control arms to demonstrate the comparative

effectiveness of pralsetinib in NSCLC

ARROW
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regulatory agencies

Other examples of the use of external RWD for drug evaluation by

Table 1. Regulatory case studies

Pembrolizumab and lenvatinib

Several immunooncology
combination therapies
Blinatumomab

harboring select FGFR genetic
alterations

Advanced endometrial carcinoma that

is not MSI-H or dMMR
Untreated, locally advanced or
metastatic renal cell carcinoma
Precursor B-cell ALL in complete
remission with detectable MRD

community-based cancer clinics
Previously conducted clinical trials
Previously conducted clinical trials

Retrospective observational cohort
study

Drug Disease setting Source of external control data Regulatory use of external control
data
Selumetinib Neurofibromatosis type 1 with Previously conducted clinical trials Establish natural history of disease
inoperable plexiform neurofibromas
(pediatric)
Erdafitinib Unresectable urothelial cancer Patient-level EHR data from US Establish natural history of disease

Isolation of treatment effect
Isolation of treatment effect

Comparative efficacy analysis

ALL, acute lymphoblastic leukemia; dMMR, mismatch repair deficient; EHR, electronic health record; FGFR, fibroblast growth factor receptor; MRD, minimal residual disease;

MSI-H, microsatellite instability-high.

Mishra-Kalyani, Ann Oncol 2022




Key methodological concerns

Lo

Data quality and metrics Cohort definition RWD heterogeneity
(internal validity) (external validity)
""‘
Endpoint validation F'at‘c.’ : Fit for purpose:
(response and time (selec lon, s c!ata complete,
confounding consistent, accurate,

to event . s
) misclassification) longitudinal?



ESMO Guidance for Reporting Oncology Real-World Evidence

ESMO-GROW flowchart illustrating the process of case selection for analysis

Dataset 1 Dataset 2+ (if applicable)

Dataset name and setting
Individual (n) or aggregated data

If multiple dataset linkage or merging
|+ Missing encounter variable(s) (n)

i« Duplicates (n)

| » Misclassification (n)

Cases included (n) : Data sources linkage or merging Exclusion criteria
Subgroup A (n) i | [identify the encounter variable(s)] Dataset 1
Subgroup B (n) (...) : « Reason a (n)
> . « Reason b (n) (...)
‘% e Dataset 2+
) (if applicable)
W « Reason a (n)
Cases included (n) « Reason b (n) (..)
Subgroup A (n)
b B (n) (...
Subgroup B (n){..) Exclusion on data cleaning
Final data cleaning « Misclassification (n)
- Missing core variables (n)

« Loss to follow-up (n)
- Missing survival data (n)
« Others (n)

Castelo-Branco, Ann Oncol 2023
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Introduction to Artificial Intelligence (Al)

The branch of computer science in which (2016) MUSE microsopy
. (1988) Convolutional || technique invented to enable
machine-based approaches are used to D ot high resolution imaging
invented by Yann LeCun | | without tissue consumption
iction — i 1965) Computerized
attempt to make a prediction — emulating — s oty ot (2018) FDA permits
. . . . (1956) Artifici i i f 2014)G i stmedi i
what an intelligent human might do in the intelligence (Al || cells and chromosomes acversariatnotwork | || using Al to detect
. . term coined by by Judith Prewitt and introduced by lan diabetic retinopathy
same situation. John McCarthy Mortimer Mendelsohn Goodfellow in adults (IDx-DR)

1960 1970 1980 1990 2000 2010

(1959) Machine learning (1986) Deep (1990) Whole- (2017) Philips receives
term coined by Arthur learning term | | slide scanners approval for a digital
Samuel as “the ability to coined by introduced pathology whole-slide
learn without being Rina Dechter scanning solution
explicitly programmed” (2013) Photoacoustic || (IntelliSite)

microscopy imaging
technique developed

s

First FDA Breakthrough approval for an Al-based
pathology solution was granted in 2019

Input layer =3 Hidden layers =————3» Output layer .
putiay v put iy Bera, Nat Rev Clin Oncol 2019



Taxonomy of Artificial Intelligence

I Debated

neural

networks deep

learning

deep
learning

Al for People and Business by Alex Castrounis, O'Reilly



Examples of Artificial Intelligence

Al not Al (?)
GPT3 ol
Input: Text ) ; _
2 Output: Continuation of text . Linear regression
A v L
Fap=l"7 1 .- 1 3
GPT3 s
% Input: Amino acid sequence 4

Output: 3D structure of protein

DALLE 2/ Imagen

Input: Text
TOAD Output: Image
Input: Pathology image
of CUP

Output: Probability of
primary tumor site

AlphaStar
Input: game
— environment
Grandmaster levelin StarCraft llusing Output: Beats
multi-agent reinforcement learning humans at

Starcraft Il

e e e b et S T s
s ooy ¥ :

Putiesion 320ccbar 0% - =

s ety Aottt e
Py

Vinvals et al., Nature 2019
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x

A phone book

Tumour shape Hand-crafted
features for medical
image analysis

Tumour texture

image: Wikimedia Commons
Aerts et al., Nat Comms 2014

Courtesy of Jakob Kather



When Al should be used in Oncology?

Small datasets,

Image data Free-text data
tabular data
_ o Convolutional Neural (LLMs)
Classical statistics,
Networks or Transformers (Transformers)

classical machine learning
Large Language Models

Deep Learning

Rosler, J Cancer Res Clin Oncol 2023



>90% of Al tools in Oncology use image data

LETTER

doi:10.1038/nature21056

1-mm
Dermatologist-level classification of skin cancer histology
with deep neural networks 3966 px

Andre Esteva'*, Brett Kuprel's, Roberto A. Novoa®?, Justin Ko®, Susan M. Swetter™*, Helen M. Blau® & Sebastian Thrun®

Chest CT
4096 px

Same patient

Esteva, Nature 2017; Echle, Brit J Cancer 2021



Image classification is easy (apparently)

@PLOS | ONE

Pigeons (Columba livia) as Trainable
Observers of Pathology and Radiology Breast
Cancer Images

Richard M. Levenson'*, Elizabeth A. Krupinski®, Victor M. Navarro?, Edward
A.Wasserman?*

Levenson, PLoS ONE 2015



Supervised classification problems: Class A or Class B

Courtesy of Jakob Kather



Current workflow, deep learning models and application of Al in

patholo

Y

Workflow of Al-based
digital pathology on oncology

[ Deep learning models applied in digital pathology

J

)

1
Tumour biopsy Routine H&E
or surgical slide preparation
resection

o

Whole slide images scanning

—

[ Artificial intelligence model deployement ]
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Applications of Al
in pathology and oncology

Cancer
diagnosis
and
classification

Biomarker
prediction

Tumour detection
(e.g., cancer vs not cancer)

Grading (e.g., well vs poorly
differentiated)

Histology subtype (e.g., non-squamous
Vs squamous lung cancer)
IHC-based markers
(e.g., oestrogen receptor)
Genetic alterations (e.g., EGFR, PIK3CA)

Signatures (e.g., MS/dMMR)

H Xgene
- |
RS ED
| PP 5
5
El e | m| 8|
Predicted 1 - Specficity
Unsupervised DL
Raw data Clustering

Identify
clinical and/or
biological
subgroups

Weekly-supervised DL

Pre-training

g for further

Loss of clastsmkcalmn
B mapping - i
: h “ﬁ
=
=
S

Generative DL (Foundation models)

Few shot Supervised
E fine-tuning m
=}
i

Zero shot

Direct Task 3

H] application -
£ Task n

= High accuracy = Data labelling required
» Predi results. = Qverfitting risk
= Task-specific  Limited generalisation
= Wide range of applications » Time-consuming

s
# No Iabeled data required * Complex interpretations
# Discovery of hidden pattems * Less acouracy

= Useful for anomaly detection
= Scalable

« Challenging to evaluate model
performance

+ Understanding and tuning

L models require more expertise

« Less labeling effort

« Botter scalability

« Flexibilty of data types
« Improved generalisation

« Noise sensitivity
« Complenity
« Potential for lower accuracy

= Can be fine-tuned for
various tasks

» Scalability
» Generalisation
 Reduced training time:

= Resource intensive
(large computational resources
and datasets)

= "Black box" nature
* Risk of perpetuating biases

M

arra, Ann Oncol. 2025, in press
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Strong vs weak supervision

Strong supervision

Class A

Class B

Weak supervision
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Deep Learning yields surprisingly
good results when trained on
weakly labeled data

Labels = Genetic alterations,
survival, response, ...

Courtesy of Jakob Kather



Which are the applications of Al in Oncology?

Tumor or not ?

Prognosis

Genotype

Nasopharyngeal
Tumour carcinoma Subtyping Colorectal Breast cancer
detection . cancer | | ERstatus
Survival Mutation
al rediction 70 icti
Prostate cancer and breast * P! g:r:‘;:ic'a' ®75 * TP53 pan prediction
cancer metastasis % 60 %62 Lymphoma %69 cancer
o Cholangiocarcinoma ® 47 & %% Pan-cancer
Breast cancer * | Colorectal cancer
) 945 36
Prostate, skin and %2 e Colorectal cancer ® ” ® SPOP prostate
breast cancer Kuna cancer Mesothelioma o 826 EGFR Lung cancer
58 Hepatocellular and 49
Breast cancer 2 %65 chglangiocarcinoma Melanoma % %37 Melanoma
Prostate cancer - Colorectal cancer —— 87 Pyl Virus presence head/neck
Skin cancer Beéli Ganicar %70 and gastric cancer
MSI gastrointestinal cancer

Hepatocellular

Breast cancer
Gastric and colon cancer :
carcinoma )
Breast cancer BAP1 in uveal melanoma
Colorectal Pan-cancer
polyps Biasticarnicar Tumour mutational
burden liver cancer

Breast cancer

Gleason grading

Oral squamos
cell carcinoma

PDL1 lung
cancer

Gleason

grading in in prostate cancer

prostate cancer  Gleason QO Internal validation Ipilimumab smmynothersey
grading in tdlanoma lung cancer
prostate cancer Grading O External validation

Response prediction

. FDA approved

Echle, Br J Cancer. 2021



Central Assumption

Specific genetic alterations in 1. Tumor cells

cancer ... o ) 2. Tumor microenvironment
... elicit changes in the

phenotype of ...

T
G —

Deep learning can infer genotype from
histology images

Courtesy of Jakob Kather



Weakly supervised Deep Learning can predict genetic alterations

from H&E images

nature., .

Genotype determines the Deep learning can predict microsatellite instability
phenotype directly from histology in gastrointestinal cancer

Jakob Nikolas Kather ©12345* Al der T. Pearson*, Niels Halama 255, Dirk Jager®35,

ias K @71, Sven H. Loosen’, Alexander Marx’, Peter Boor 8, Frank Tacke®,
Ulf Peter Neumann', Heike I. Grabsch © "2, Takaki Yoshikawa™", Hermann Brenner?'s's,
Jenny Chang-Claude, Michael Hoffmeister's, Christian Trautwein' and Tom Luedde ©™

8 b C Normalize and sort
Find tumor

Deep Learning
detects genotype
from the phenotype

Kather, Nat Med 2019



nature
cancer

Can we extend this to other genetic alterations?

ARTICLES

https://doi.org/10.1038/543018-020-0087-6

) Check for updates.

Pan-cancer image-based detection of clinically
actionable genetic alterations

Jakob Nikolas Kather ©%3%, LaraR.Heij**¢, Heikel. Grabsch ©"7#, Chiara Loeffler', Amelie Echle’,
Hannah Sophie Muti', Jeremias Krause', Jan M. Niehues', Kai A.J. Sommer’, Peter Bankhead®,
LoesF.S.Kooreman’, Jefree J. Schulte ©'°, Nicole A. Cipriani ', Roman D. Buelow (¢, Peter Boor?,
Nadina Ortiz-Briichle ¢, Andrew M. Hanby?, Valerie Speirs ©™, SaraKochanny', Akash Patnaik,
Andrew Srisuwananukorn®, Hermann Brenner?'***, Michael Hoffmeister', Piet A.van denBrandt ¢,
Dirk Jager??, Christian Trautwein', Alexander T. Pearson ©'2"* and Tom Luedde © 7181?52
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WoundHeal-lo n=528 ol 0.76"
WoundHeal-hi n=467 KA 0.76*
RD-lo n=564 = 0.74*

HRD-hi n=389 a 0.74*
Normal n=129 2] 0.69"
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Histologic and clinical subtypes
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Kather, Nature Cancer 2020



Al-driven model to recover cases with low levels of HER2 from IHC
HER2-negative breast cancers

HER2 Model Development Slide Level Classification

AUC: 0.78 +0.08
14.75 + 4.2 +ve samples per fold. 17212 + 16.6 -ve

Average TPR
- =
L =1
EE [ 1 :

Invasive Primary Deep Learning Salient HER2 Expression

BC Sample GGG EIER Ti D Classifier System
ggregaio ssue 10-fold Cross Validation, >1.2KWSls

Breast Neoplasm
Classifier System
Trained on 40K WSls

TPR (Sensitivity)

0.4 0.6 0.8

FPR (1-Specificity)

HER2 Model Performance

l Metrics Case Level Slide Level l l *Calculated on fest set

Sensitivity* 078 0.73

Specificity* 078 0.77

PPV* 023 021

NPV* 0.98 0.97

: # frue posifive / ( # frue positive + # false negative)
city: # true negative / (# frue negative + # false positive)
PPV: # frue positive / ( # frue positive + # false positive)
NPV: # frue negafive / ( # frue negative + # false negative)

Marra, ESMO 2022, manuscript in preparation



Transformers have multiple attention heads:

more inter

__nx768 (n+ 1)x512

f.Fixed e i we [ mse
i Head BRAF?
'8 3} %

-

| o

}—

~100,000x200,000
pixels

1

Transformer

(8 heads)

T 1
Transformer layer

(8 heads)

KRAS?

' O Convolutional |
| | | O Transformer |
: 1 O Linear
Embeddings

WSl digitization

Patch aggregation Final prediction

n patches
(512x512 pixels)

Att. head 1.1 Att. head 1.2 Att. head 1.3 Att. head 1.4 Att. head 2.1 Att. head 2.2 Att. head 2.3 Att. head 2.4

Tessellation Stain augmentation

Wagner, Cancer Cell 2023



Al-driven multimodal data integration in Oncology

Unimodal
Unimodal feature
submodels extraction
. Clinical ‘
‘ ; Radiological (\ o

.}l . Pathological .

”Qq . Genomic ()

Data
centre
GPUs

|

Final
submodel

Multimodal \

Patient
outcomes

integration

* Unsupervised
subtype discovery
* Censored
event modelling

Acosta, Nat Med 2022; Boehm, Nat Rev Cancer 2022



Multimodal integration of genetic data with image data

Betertion Visiglizaton Morphological Feature Quantification of High Attention Regions
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Chen, Cancer Cell 2022



Multimodal integration of genetic data with image data

Feature selection and late fusion
to stratify by OS
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Boehm, Nat Cancer 2022



Developing a multimodal transformer model for breast cancer risk

a. Resection b.  Pprofiling C.  Digitization d. Modeling
Y =N
& Scan histology Infer recurrence
IHC score from slides Low attn.  High attn.
3 - a e e 8
y % m. I
Early-stage HR+/HER2- Recurrence score Pathologist report Interpret tumor b
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Progesterone Receptor: : | : @ ‘3
Positive nuclear staining in 20% of tumor -
HER2: Uoc
Negative (1+).

Boehm, Marra et al., Nature Commun. 2025



Developing a multimodal transformer model for breast cancer risk
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Multimodal Foundation Models

Multimodal self-supervised training
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Take-Home Messages

« Artificial Intelligence (Al) has indisputable potential to enhance the care of patients with
cancer from the the diagnosis to personalizing treatments

o The multimodal integration of Al and Big Data can further refine clinical subtyping to
identify patient subsets for treatment escalation/de-escalation and testing new drugs

o From the clinical perspective, building clinicians’ trust in Al-assisted decision-making is
critical for the entry of Al in clinic



“Al won't replace humans,
but humans using Al will”

Fei-Fei Li
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